首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have fabricated a highly sensitive, simple and label‐free single polypyrrole (Ppy) nanowire based conductometric/chemiresistive DNA sensor. The fabrication was optimized in terms of probe DNA sequence immobilization using a linker molecule and using gold‐thiol interaction. Two resultant sensor designs working on two different sensing mechanisms (gating effect and work function based sensors) were tested to establish reliable sensor architecture with higher sensitivity and device‐to‐device reproducibility. The utility of the work function based configuration was demonstrated by detecting 19 base pair (bp) long breast cancer gene sequence with single nucleotide polymorphism (SNP) discrimination with high sensitivity, lower detection limit of ∼10−16 M and wide dynamic range (∼10−16 to 10−11 M) in a small sample volume (30 µL). To further demonstrate the utility of the DNA sensor for detection of target sequences with different number of bases, targets with 21 and 36 bases were detected. These sequences have implications in environmental sample analysis or metagenomics. Sensor response showed increase with the number of bases in the target sequence. For long sequence (with 36 bases), effect of DNA alignment on sensor performance was studied.  相似文献   

2.
A simple, one-step method for fabricating single biologically functionalized conducting-polymer (polypyrrole) nanowire on prepatterned electrodes and its application to biosensing was demonstrated. The biologically functionalized polypyrrole was formed by the electropolymerization of an aqueous solution of pyrrole monomer and the model biomolecule, avidin- or streptavidin-conjugated ZnSe/CdSe quantum dots, within 100 or 200 nm wide by 3 mum long channels between gold electrodes on prefabricated silicon substrate. When challenged with biotin-DNA, the avidin- and streptavidin-polypyrrole nanowires generated a rapid change in resistance to as low as 1 nM, demonstrating the utility of the biomolecule-functionalized nanowire as biosensor. The method offers advantages of direct incorporation of functional biological molecules into the conducting-polymer nanowire during its synthesis, site-specific positioning, built-in electrical contacts, and scalability to high-density nanoarrays over the reported silicon nanowire and carbon nanotube biosensors.  相似文献   

3.
通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1.  相似文献   

4.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   

5.
《Electroanalysis》2017,29(5):1267-1277
Graphite rod (GR) modified with electrochemicaly deposited gold nanoparticles (AuNPs) and adsorbed glucose oxidase (GOx) was used in amperometric glucose biosensor design. Enzymatic formation of polypyrrole (Ppy) on the surface of GOx/AuNPs/GR electrode was applied in order to improve analytical characteristics and stability of developed biosensor. The linear glucose detection range for Ppy/GOx/AuNPs/GR electrode was dependent on the duration of Ppy‐layer formation and the linear interval was extended up to 19.9 mmol L−1 after 21 h lasting synthesis of Ppy. The sensitivity of the developed biosensor was determined as 21.7 μA mM−1 cm−2, the limit of detection – 0.20 mmol L−1. Ppy/GOx/AuNPs/GR electrodes demonstrated advanced good stability (the t 1/2 was 9.8 days), quick detection of glucose (within 5 s) in the wide linear interval. Additionally, formed Ppy layer decreased the influence of electroactive species on the analytical signal. Developed biosensor is suitable for the determination of glucose in human serum samples.  相似文献   

6.
Organic nanowire (NW) transistor arrays with a mobility of as high as 1.26 cm(2)·V(-1)·S(-1) are fabricated by combining the dip-coating process to align the NW into arrays with the inkjet printing process to pattern the source/drain electrodes. A narrow gap of ~20 μm has been obtained by modifying the inkjet process. The all-solution process is proven to be a low-cost, high-yield, simple approach to fabricating high-performance organic NW transistor arrays over a large area.  相似文献   

7.
In this study, gold microelectrode array (Au/MEA) with electrode of 12 μm diameter was fabricated by photolithography technique. Subsequently, polypyrrole (Ppy) modified gold microarrays sensor (Ppy/Au/MEA) was prepared by cyclic voltammetry technique. The deposition potential range and number of cycles were optimised in order to get optimum thickness of Ppy film. Scanning Electron Microscope and Atomic Force Microscope investigations reveal that Ppy coating formed at 3 cycles is porous with thickness of 1.5 μm which exhibiting high catalytic current for ascorbic acid (AA) in square wave technique (SWV). In contrast to earlier sensors designs, these Ppy/Au/MEA sensors exhibits lower detection limit (LOD) of 10 nm towards AA at physiological conditions. It also exhibits enhanced sensitivity (2.5 mA cm−2 mM−1) and long range of linear detection limit from 10 nm to 2.8 mM. In the same way, polypyrrole modified macro Au (Ppy/Au/MA) biosensor was also fabricated and its electro catalytic property towards AA was compared with that of Ppy/Au/MEA. The Ppy/Au/MA exhibits sensitivity of only 0.27 mA cm−2 mM−1, LOD of 5 μM and linear range of 10 μM to 2.2 mM. Hence, our investigations indicate that the Ppy/Au/MEA could serve as highly sensitive sensor for AA than any of the earlier designs. So, the Ppy/Au/MEA electrode was utilised for determination AA in a wide variety of real samples.  相似文献   

8.
Here we report a cost effective and versatile way of synthesizing and assembling multi‐functional (e.g., gold‐polypyrrole‐nickel‐gold) nanowires. Multisegmented nanowires were synthesized using electrodeposition method for precise control over segment dimensions for proper expression of material functionality. The nanowires were integrated on microfabricated electrodes using magnetic dipole interactions between the ferromagnetic segment in the nanowire and the ferromagnetic electrodes. The electrical properties of multisegmented nanowires showed semiconducting behavior with the activation energy of ca. 0.27 eV for the conducting polymer segment of the nanowire. These nanowire devices showed response towards light and exposure to ammonia, demonstrating their potential use as photonic device and gas sensor, respectively.  相似文献   

9.
We have demonstrated a single molecule field effect transistor (FET) which consists of a redox molecule (perylene tetracarboxylic diimide) covalently bonded to a source and drain electrode and an electrochemical gate. By adjusting the gate voltage, the energy levels of empty molecular states are shifted to the Fermi level of the source and drain electrodes. This results in a nearly 3 orders of magnitude increase in the source-drain current, in the fashion of an n-type FET. The large current increase is attributed to an electron transport mediated by the lowest empty molecular energy level when it lines up with the Fermi level.  相似文献   

10.
Kim S  Rim T  Kim K  Lee U  Baek E  Lee H  Baek CK  Meyyappan M  Deen MJ  Lee JS 《The Analyst》2011,136(23):5012-5016
We have fabricated Si nanowire (SiNW) based ion-sensitive field effect transistors (ISFETs) for biosensing applications. The ability to prepare a large number of sensors on a wafer, the use of standard silicon microfabrication techniques resulting in cost savings, and potential high sensitivity are significant advantages in favor of nanoscale SiNW ISFETs. The SiNW ISFETs with embedded Ag/AgCl reference electrode were fabricated on a standard silicon-on-insulator wafer using electron-beam lithography and conventional semiconductor processing technology. The current-voltage characteristics show an n-type FET behavior with a relatively high on/off current ratio, reasonable sub-threshold swing value, and low gate-leakage current. The pH responses of the ISFETs with different pH solutions were characterized at room temperature which showed a clear lateral shift of the drain current vs. gate voltage curve with a change in the pH value of the solution and a sensitivity of 40 mV pH(-1). The low frequency noise characteristics were investigated to evaluate the signal to noise ratio and sensing limit of the devices.  相似文献   

11.
Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm^-2. Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of-0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L) ^-1 cm^- 2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.  相似文献   

12.
Electronic transport has been studied by measuring the characteristics of field effect transistors using high purity perylene and the results have been compared with those from time-of-flight measurements. The purity of the material has been monitored by carrier trapping time and delayed fluorescence lifetime. Three types of field effect transistors have been studied: (1) thin film transistor, (2) transistor prepared by placing a single crystal flake on a substrate and (3) transistor fabricated on a single crystal by depositing electrodes and insulating layer onto it. Compared to thin film transistors prepared by evaporating perylene onto a SiO2/Si substrate, higher mobility values were obtained with transistors using single crystals, but the electrical characteristics of the transistors were far from ideal: large threshold gate voltage observed in the second class of FETs indicated that a high density of traps are present at the interface between the organics and the insulator. A transistor of the third class showed that it functioned indeed as a FET with a reasonably high mobility, but the operation was not stable enough to allow reliable measurements. Much remains to be improved in the design and construction of a perylene FET before the potentiality of the material is fully developed. Also, it remains to be explored to what extent the bulk purity and the molecular order at the organics/insulator interface influence the transport of the charge carriers in an organic FET.  相似文献   

13.
This study describes a new, basic procedure for the tuning of some analytical parameters of enzymatic biosensors that are based on hydrogen peroxide-producing oxido-reductases. An amperometric biosensor based on glucose oxidase (GOx) (EC 1.1.3.4) from Penicillum vitale, immobilized on a carbon rod electrode by cross-linking with glutaraldehyde, was exploited as a model system for demonstration of the approach described here. Such an important analytical parameter as the upper detection limit was dramatically changed by the formation of a polypyrrole conducting polymer layer by the GOx-induced polymerization of polypyrrole (Ppy). An increase in the upper detection limits for differently modified electrodes was estimated by calculation of the apparent Michaelis-Menten constant [K(M(app))]. A significant increase in the long-term stability of the GOx-based electrode modified by Ppy (GOx/Ppy) was detected compared with that of an unmodified one. Further application of this approach, based on the self-encapsulation of glucose oxidase and other oxidases, is predicted for such biosensors where extension of the detection rate as well as K(M(app)) are required.  相似文献   

14.
Hybrid wires composed of metal and conducting polymer (polypyrrole, Ppy) were electrochemically synthesized using a template synthesis method. We showed that the dimensions of the hybrid wires can be tailored by controlling the time of electrolysis. The electrical properties of Ppy having different lengths were measured using a scanning probe microscope (SPM) tip as an electrode without aligning the hybrid wires on a substrate. Especially, temperature-dependent characteristics of the I-V curve were determined. As we expected, the shorter the Ppy wire is, the better the current response produced. The activation energy of each Ppy wire is determined. It is confirmed that the electrical properties of a single wire of Ppy can be measured by SPM.  相似文献   

15.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   

16.
Biosensors based on field‐effect transistor (FET) structures have attracted considerable attention because they offer rapid, inexpensive parallel sensing and ultrasensitive label‐free detection. However, long‐term repeatable detection cannot be performed, and Ag/AgCl reference electrode design is complicated, which has hindered FET biosensors from becoming truly wearable health‐monitoring platforms. In this paper, we propose a novel wearable detection platform based on AlGaN/GaN high‐electron‐mobility transistors (HEMTs). In this platform, a sweatband was used to continuously collect sweat, and a pH detecting unit and a potassium ion detecting unit were formed by modifying different sensitive films to realize the long‐term stable and repeatable detection of pH and potassium ions. Experimental data show that the wearable detection platform based on AlGaN/GaN HEMTs has good sensitivity (pH 3–7 sensitivity is 45.72 μA/pH; pH 7.4–9 sensitivity is 51.073 μA/pH; and K+ sensitivity is 4.94 μA/lgαK+), stability (28 days) and repeatability (the relative standard deviation (RSD) of pH 3–7 sensitivity is 2.6 %, the RSD of pH 7.4–9 sensitivity is 2.1 %, and the RSD of K+ sensitivity is 7.3 %). Our newly proposed wearable platform has excellent potential for predictive analytics and personalized medical treatment.  相似文献   

17.
The aim of this work was to analyse the electrostatic potential profile, various effects of electrolyte concentrations, and the influences of surface charge on a protein bound to a lipid coated Silicon nanowire field effect transistor (Si-NW FET) biosensor by implementing the modified PoissonBoltzmann (MPB) model. In this work, we modelled a lipid monolayer-coated Si-NW FET for the sensing of proteins, which consisted of variable amounts of aspartic acid. The electrostatic potential profile, protein charge distributions, the response to various electrolyte concentration, and the impacts of various surface charge were studied by implementing the MPB model with the Si-NW FET biosensor. Additionally, a comparison between the use of the MPB and the PoissonBoltzmann model in studying the effects of various surface charges was carried out. Taken together, it was found that the MPB model showed a higher resolution in studying the Si-NW FET biosensor model when higher concentrations and surface charges were administered.  相似文献   

18.
We describe the detection of glucose based on a liquid-ion gated field-effect transistor configuration in which enzyme-functionalized polypyrrole nanotubes are employed as the conductive channel. First of all, carboxylated polypyrrole nanotubes (CPNTs) were successfully fabricated by the chemical polymerization of an intrinsically functionalized monomer (pyrrole-3-carboxylic acid, P3CA) without degradation in major physical properties. The CPNTs possessed not only well-defined functional groups but also electrical properties comparable to nonsubstituted polypyrrole. Importantly, the carboxylic acid functional group can be utilized for various chemical and biological functionalizations. A liquid-ion gated FET sensor was readily constructed on the basis of the chemical functionality of CPNTs. In the first stage, the CPNTs were immobilized onto a microelectrode substrate via covalent linkages. It was noteworthy that the covalent immobilization allowed high-quality contact between the nanotubes and the microelectrodes in the liquid phase. The second stage involved the covalent binding of glucose oxidase (GOx) enzyme to the nanotubes. The covalent functionalization generally provides excellent enzymatic activity and thermal stability. The fabricated FET sensor provided real-time response (an increase in source-drain current) and high sensitivity toward the various concentrations (0.5-20 mM) of glucose. The enzymatic reaction product, hydrogen peroxide, played pivotal roles in modulating the charge transport property of CPNTs.  相似文献   

19.
Gold-palladium nanocrystals with starlike shapes and high aspect ratio nanowires were grown in a surfactant solution. The incorporation of palladium into the growing gold nanostructures induced nanowire formation with high yield. Kinetic control of the metal deposition rate through tuning of the pH value to about 5 was crucial for the nanowire growth. The nanostructures were characterized by high-resolution electron microscopy and energy-dispersive X-ray spectroscopy. The Au-Pd nanowires were deposited on functionalized silicon wafers.  相似文献   

20.
单纳米颗粒作为信号感应单元在化学与生物传感应用中已引起广泛关注.本文通过暗场显微成像(iDFM)研究了不同径向比金纳米棒的光散射性质.将iDFM与扫描电子显微镜(SEM)结合表征种子生长法制备的金纳米棒,结果发现,因局域表面等离子体共振而展示出的红色散射光随单个金纳米棒的径向比增大逐渐红移,且金纳米棒对其周围介质折光率(RI)变化的敏感程度随径向比增大而增大.这一结果对设计高灵敏的生物纳米传感器、提高分析检测的灵敏度具有很好的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号