首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.  相似文献   

2.
Asymmetric bidentate Schiff base ligand (HL) and its cobalt(III), nickel(II), and copper(II) complexes have been synthesized (where L = 2-[(4-methoxy-2-nitrophenyl)iminomethyl]phenol). The ligand and its metal complexes have been characterized by elemental analyses (CHN) and FTIR spectroscopy. Thermogravimetric analyses of the compounds reveal their thermal stabilities along with their thermal decomposition pattern. In addition, the complexes have been used for the preparation of corresponding metal oxide nanoparticles by controlled aerobic thermal decomposed at 500 °C. The FTIR pattern of the obtained solids receals the formation of the metal oxides nanoparticles.  相似文献   

3.
A new Schiff base N-[(E)-(2-hydroxyphenyl)methylidene]-N’-[(Z)-(2-hydroxyphenyl)methylidene]ethanebis(thioamide) (LC) containing sulfur, nitrogen, and oxygen atoms has been synthesized by condensation of ethanebis(thioamide) with 2-hydroxybenzaldehyde. Metal complexes were synthesized by reaction of the new ligand with copper(II) and cobalt(II) as nitrate salts and with rhodium(III) as chloride salt, using hot absolute ethanol as solvent. All the new compounds were characterized by use of different physicochemical techniques including UV–visible spectroscopy, magnetic susceptibility, IR spectroscopy, molar conductance, and determination of metal content. It is proposed the paramagnetic copper and cobalt complexes adopt octahedral geometry whereas the diamagnetic rhodium complex has octahedral geometry.  相似文献   

4.
The complexes of transition metal ions with an azamacrocyclic tetradentate nitrogen donor [N4] ligand viz. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetramethyltricyclo[15.3.1.1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) have been synthesized. All the complexes were found to have general composition M(L)X2 [where M = manganese(II), cobalt(II), nickel(II) and copper(II) and X = Cl- & NO3-]. All the complexes are characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, EPR spectral and cyclic voltammetric studies. An octahedral geometry was assigned for Mn(II), Co(II) and Ni(II) complexes and tetragonal for Cu(II) complexes. The biological actions of the ligand and complexes have been screened in vitro against many bacteria and pathogenic fungi to study their comparative capacity to inhibit the growth.  相似文献   

5.
A new ligand, 4‐(1‐methyl‐1‐mesityl‐3‐cyclobutanyl)‐2‐(2‐hydroxy‐1‐naphthylideneimino)thiazole (LH), has been synthesized starting from 1‐methyl‐1‐mesityl‐3‐(2‐chloro‐1‐oxoethyl)cyclobutane and thiourea and subsequently 2‐hydroxy‐1‐napthalaldehyde. Mononuclear complexes with a metal‐ligand ratio of 1:2 have been prepared with Co(II), Cu(II), Ni(II), and Zn(II) metals. The authenticity of the ligand and its complexes are proposed based on elemental analyses, IR, UV‐vis, 13C and 1H NMR spectra, magnetic susceptibility measurements, thermogravimetric analyses, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:42–46, 2001  相似文献   

6.
N,N-diethylnicotinamide-acetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and investigated by elemental analysis, magnetic susceptibility, solid state UV–Vis, direct injection probe mass spectra, FTIR spectra and thermoanalytic TG-DTG methods. The complexes contain two waters, two acetylsalicylate (asa) and two N,N-diethylnicotinamide (dena) ligands per formula unit. The acetylsalicylate and N,N-diethylnicotinamide are monodentate through acidic oxygen and nitrogen of pyridine ring. Decomposition of each complex starts with dehydration then decomposition of N,N-diethylnicotinamide and acetylsalicylate, respectively. The thermal dehydration of the complexes takes place in one or two steps. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The final decomposition products are found to be metal oxides.  相似文献   

7.
8.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

9.
Five types of fibrous assemblies, namely, polyester, wool, cashmere, kapok, and goose down, were tested for their heat-insulating properties in the natural state using the apparatus developed by the authors. The influences of bulk density, fiber type, fiber arrangements, and compression on the heat-insulating properties of the fibrous assemblies was examined systematically. The results show that kapok assembly with low bulk density, goose down assembly with high bulk density and the randomly arranged fibrous assembly demonstrated the best heat-insulating property; however, considering practical use and the influence of compression, kapok assembly and fibrous assemblies arranged in the form of fiber balls exhibited the most stable and optimum heat-insulating property. The Daryabeigi heat-transfer model that considers fiber contact and scattering effect was used to calculate the heat-insulating properties of the five fibrous assemblies. A similar model was developed by Fanworth, which neglected the fiber and the scattering effect. Comparison of the two models showed that the Daryabeigi model was more accurate in predicting the heat-insulating properties of fibrous assemblies.  相似文献   

10.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

11.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

12.
Mononuclear NCS? containing complexes, [M(NCS)2L] (L?=?N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine), [Cu(NCS)2L′] (L′?=?N-(3,5-dimethylpyrazol-1-ylmethyl)aminomethylpyridine), and NCSe? containing complexes [ML(NCSe)(H2O)]ClO4 (M?=?Ni+2, Co+2) have been synthesized and characterized by elemental analysis, spectroscopic, and physico-chemical methods. Structural studies of [Cu(NCS)2L′] show copper is five coordinate with distorted trigonal bipyramidal geometry with two cis NCS?. [M(NCS)2L] and [ML(NCSe)(H2O)]ClO4 (M?=?Ni+2 and Co+2) are expected to be octahedral.  相似文献   

13.
《Polyhedron》1988,7(5):337-343
The new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with tridentate Schiff base, the product of condensation of o-aminobenzyl alcohol with salicylaldehyde have been synthesized and characterized by elemental analysis, IR, electronic, EPR and Mössbauer spectra, thermal analysis, magnetic susceptibility and molecular weight measurements. Dimeric or polymeric structures for the investigated complexes were proposed. The interaction of the cobalt complex with dioxygen is also described.  相似文献   

14.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

15.
Manganese(II), cobalt(II), nickel(II), and copper(II) complexes are synthesized with a novel tetradentate ligand, viz. 1,5,9,13-tetraaza-6,14-dioxo-8,16-diphenylcyclohexadecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic, and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolyte nature for Mn(II), Co(II), and Cu(II) whereas 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X(2)] and [Ni(L)]X(2), respectively (where M = Mn(II), Co(II), and Cu(II) and X = Cl- and NO(3-)). On the basis of IR, electronic, and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

16.
(1R,2R)-1,2-bis-(5-amino-1,3,4-thiadiazole-2-yl)ethane-1,2-diol (L) has been prepared by the reaction of thiosemicarbazide with (2R,3R)-(+)-tartaric acid (I) and phosphorous oxychloride, and its complexes with Co(II), Ni(II) and Cu(II) have been obtained. The structures of the ligand and its complexes have been established by i. r., 1H- and 13C-n.m.r. spectra, u.v.–vis–nir spectroscopy, elemental analyses, T.g.-D.t.a. and magnetic susceptibility measurements.  相似文献   

17.
Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with a new tetraaza macrocyclic ligand have been synthesized and characterized by microanalyses, molar conductance, magnetic susceptibility, mass, thermogravimetric (TGA), IR, 1H and 13C NMR, electronic and ESR spectral studies. All the complexes are found to have the formula [MLX2]x nH2O and are six-coordinated with distorted octahedral geometry.  相似文献   

18.
Co(III) complexes of N(3)O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenolate (tbuL), 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenolate (tbuL(Mepy)(2)), were prepared, and precursor Co(II) complexes, [Co(tbuL)Cl] (1) and [Co(tbuL(Mepy)(2))Cl] (2), and ternary Co(III) complexes, [Co(tbuL)(acac)]ClO(4) (3), [Co(tbuL)(tbu-cat)] (4), and [Co(tbuL(Mepy)(2))(tbu-SQ)]ClO(4) (5), where acac, tbu-cat, and tbu-SQ refer to pentane-2,4-dionate, 3,5-di(tert-butyl)catecholate, and 3,5-di(tert-butyl)semiquinonate, respectively, were structurally characterized by the X-ray diffraction method. Complexes 3 and 5 have a mononuclear structure with a fac-N(3)O(3) donor set, while 4 has a mer-N(3)O(3) structure. The cyclic voltammogram (CV) of complex 3 exhibited one reversible redox wave centered at 0.93 V (vs Ag/AgCl) in CH(3)CN. Complex 5 was converted to a phenoxyl radical species upon oxidation with Ce(IV), showing a characteristic pi-pi* transition band at 412 nm. The ESR spectrum at low temperature and the resonance Raman spectrum of 3 established that the radical species has a Co(III)-phenoxyl radical bond. On the other hand, the CVs showed two oxidation processes at E(1/2) = 0.01 and E(pa) = 0.92 V for 4 and E(1/2a) = 0.05 and E(1/2b) = 0.69 V for 5. The rest potential of 4 (-0.11 V) was lower than the E(1/2) value, whereas that of 5 (0.18 V) was higher, indicating that the first redox wave of 4 and 5 is assigned to the tbu-cat and the tbu-SQ redox process, respectively. One-electron oxidized 4 showed absorption, resonance Raman, and ESR spectra which are similar to those of 5, suggesting formation of a stable Co(III)-semiquinonate species, which has the same oxidation level of 5. The resonance Raman spectrum of two-electron oxidized 4 showed the nu(8a) bands of the semiquinonate and phenoxyl radical, which were absent in the spectrum of one-electron oxidized 5. Since both oxidized species were ESR inactive at 5 K, the former was concluded to be a biradical species containing semiquinonate and phenoxyl radicals coupled antiferromagnetically and the latter to a species with a coordinated quinone.  相似文献   

19.
Cobalt(II), nickel(II) and copper(II) complexes having the general composition M(L)X2 (where M = CO(II), Ni(II) and Cu(II), L = ligand, i.e. 3,4,12,13-tetraketo-2,5,11,14,19,20-hexaazatricyclo[13.3.1.1(6-10)]cosane; 1(19),6,8,10(20),15,17-hexaene and X stands for Cl-; NO3- and SO42-), have been prepared. The structure of the complexes has been elucidated by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The magnetic moment measurements of the complexes indicate that the metal ion is in high-spin state. On the basis of IR, electronic and EPR spectral studies an octahedral geometry was assigned for Co(II) and Ni(II) complexes whereas tetragonal geometry for Cu(II) complexes. This ligand and its complexes were also screened against bacteria and pathogenic fungi in vitro.  相似文献   

20.
Acetate and perchlorate dinuclear metal complexes of Co(II), Cu(II) and Zn(II) with the cresolate polypodal ligand having mixed phenolate and pyridyl pendant functionalities, H3L, have been synthesized. The complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV–Vis spectroscopy, magnetic studies and conductivity measurements. Crystal structures of H3L, [Cu2(HL)(OAc)(H2O)2](OAc)·1.5H2O and [Zn2L(CH3OH)3](ClO4)CH3OH·2H2O complexes, have been also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号