首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono‐ and hetero‐ binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)2Ir(dpm‐py)] family (Ppy=2‐phenylpyridine, dpm‐py=5‐(4‐pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5 positions on the pyridyl unit diminishes the non‐radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge‐transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6‐diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90 %. However, they do limit the charge‐transfer character of the acceptor’s excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

2.
Luminescent cyclometalated iridium complexes based on pyridyl appended dipyrrin ligands were prepared and characterized both in the solid state and in solution. The functionalization of the peripheral pyridyl moiety causes dramatic changes on the emission properties of both mono- and hetero- binuclear complexes. A detailed photophysical investigation of the two mononuclear derivatives of the [(Ppy)(2)Ir(dpm-py)] family (Ppy=2-phenylpyridine, dpm-py=5-(4-pyridyl)dipyrrin) was carried out. Introduction of methyl groups at the 3 and 5?positions on the pyridyl unit diminishes the non-radiative rate constant by locking the peripheral pyridyl group orthogonally to the dipyrrinato plane. Thus, they limit the rotational degree of freedom, as well as the charge-transfer character of the excited state. The coordination of these two complexes to a cyclometalated [(dppy)Pt] fragment (dppy=2,6-diphenylpyridine) led to the formation of binuclear species in which the iridium and platinum complexes behave as acceptors and donors, respectively. In these heterobinuclear compounds, the methyl groups do not influence the energy transfer efficiency, which is estimated to be above 90?%. However, they do limit the charge-transfer character of the acceptor's excited state, as well as its rotational degree of freedom, thus avoiding the detrimental effect upon the photophysical performance.  相似文献   

3.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

4.
Four ruthenium(II) complexes, BPT, BPN, BPPT, and BPPN, have been prepared and characterized by (1)H NMR, (13)C NMR, high resolution mass spectrometry (HRMS), elemental analysis, and X-ray crystallography. All the complexes incorporate a pyridyl unit on the terpyridine-type or N-heterocyclic carbene (NHC) ligand and the pyridyl unit can be protonated upon addition of 1.0 M HCl in diethyl ether. The proton-dependent absorption and luminescence spectrum were measured in CH(3)CN. In the case of BPT, the λ(max)(abs) was moved by 10 nm from 490 nm to 500 nm after the addition of 12 equiv. of HCl and the intensity of the emission spectrum increased. In contrast, in the case of BPN, the λ(max)(abs) was red-shifted by 43 nm from 424 nm to 467 nm and the emission was dramatically quenched upon the addition of the equiv. of HCl. However, there were no noticeable changes in the λ(max)(abs) values of BPPT and BPPN even after the addition of the HCl to a solution of those complexes. Moreover, BPN has a selective sensing property for a proton among many cations.  相似文献   

5.
New Mn(II) complexes containing 5-(2-pyridyl)tetrazole, 5-(3-cyano-4-pyridyl)tetrazole or 5-(4-pyridyl)tetrazole ligands are described. The complexes are prepared by reaction of the corresponding cyanopyridines with sodium azide in the presence of Mn(II) salts. All the complexes have been characterized by X-ray crystallography, which reveals that 5-(pyridyl)tetrazole ligands can coordinate to Mn through either type of nitrogen atom in the tetrazole residue or via the pyridyl group. In the solid state, extended 2D and 3D structures are produced through networks of hydrogen bonding (involving water molecules and the tetrazolate residue). Acidification of the complexes produces the corresponding free 5-(pyridyl)-1H-tetrazole.  相似文献   

6.
The ground geometrical and electronic structures, charge transfer (CT) behaviors, absorption, and emission properties of the three copper(I) complexes [Cu(pypz)(POP)]+ (1) , [Cu(pympz)(POP)]+ (2) , and [Cu(pytfmpz)(POP)]+ (3) (pypz=1‐(2‐pyridyl)pyrazole, pympz=3‐methyl‐1‐(2‐pyridyl)pyrazole, and pytfmpz=3‐trifluoromethyl‐1‐(2‐pyridyl)pyrazole), have been investigated using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT). The vertical absorption energies of the all copper(I) complexes are well reproduced by TD‐DFT calculations based on the CT amount calculations. The triplet emission properties of the all copper(I) complexes were correctly evaluated at BMK/LANL2DZ/6‐31G* level of theory. In addition, the thermally activated delayed fluorescence properties of 1–3 were discussed in detail based on the spatial separation of the HOMO and LUMO and vertical excited energies. These theoretical insights should be expected to provide some guides for the design and synthesis of efficient luminescent copper(I) complexes. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The 3-phenyl-2-(pyridin-2-yl)oxazolidine ligand (ppo) was synthesised and its coordination behaviour regarding Ni(II) and Pd(II) centres was studied. The reaction with K(2)PdCl(4) affords [Pd(N,N'-ppo)Cl(2)] (1), in which ppo binds to palladium via the pyridyl nitrogen and the oxazolyl nitrogen atoms. On the contrary, reaction with NiCl(2)·6H(2)O produces [Ni(N,O-ppo)(2)Cl(2)] (2), in which two ppo ligands are coordinated via the pyridyl nitrogen and the oxygen atom of the oxazolidine ring. The X-ray diffraction analysis of the complexes confirms a square planar geometry for Pd(II) in 1 and an octahedral configuration around Ni(II) in 2, which, to the best of our knowledge, represents the first reported example of a structurally characterised nickel-oxazolidine compound. In addition, both complexes prove to be active catalysts under mild conditions in the aza-Michael reaction of (E)-4-phenylbut-3-en-2-one (benzalacetone) with aliphatic amines.  相似文献   

8.
The reactions of CuBr(2) with pyridyl 2,2':6',2'-terpyridine ligands in methanol yielded four copper complexes under solvothermal conditions. The self-assembly processes were accompanied by designing bitopic precursor ligands and increasing the stoichiometric metal-ligand ratio. In the four resulting complexes, the pendant pyridyl groups of pyridylterpyridine were selectively in situ N-methylated and yielded the 4'-(N-methylpyridinium)-2,2':6',2'-terpyridine cations, including the 2-position pyridyl group which is difficult to be N-alkylated due to the steric problem. Partial divalent copper atoms were reduced to cuprous ones in the solvothermal reactions, which made the mixed-valence copper atoms coexist in each compound. The mixed-valence complexes have a varied dimensionality (from 2D to 0D) and the Cu(I)Br cluster, which can be controlled by changing the metal-ligand ratio. Theoretical studies show that the nucleophilic attack of the nitrogen atom in the pendant pyridyl is more facile than others of terpyridine. A possible mechanism was also proposed.  相似文献   

9.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   

10.
The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.  相似文献   

11.
Transition Metal Chemistry - Rhenium(I) and (VII) complexes with cyclohex-1-enylolonium cation and bridging pyridyl derivatives are reported. Additionally, the CO-bridged pyridyl and their related...  相似文献   

12.
Ligand exchange reactions of pyridyl ligand/transition metal complexes are examined in a quadrupole ion trap mass spectrometer to evaluate the ability of multidentate ligands to displace other pyridyl ligands in complexes where the charge is highly delocalized and there is a great degree of ligand repulsions. Partially or fully coordinated transition metal ions in dimer or trimer species involving small mono- or bidentate pyridyl ligands undergo ligand displacement reactions with larger bi- and tridentate pyridyl ligands. Larger ligands with greater chelation abilities, such as 1,10-phenanthroline and 2,2′:6,2″-terpyridine, are often able to simultaneously displace two nonchelating ligands from a partially coordinated metal ion. However, the analogous reactions involving displacement of bidentate chelating ligands from more fully coordinated transition metal ion complexes are nearly quenched. In other cases, mixed-ligand dimer and trimer complexes are observed, indicating step-wise displacement of the initially complexed ligands.  相似文献   

13.
Iron(II) complexes of the type [Fe(L)(NCS)2] with tetradentate ligands L are well known to show spin crossover properties. However, this behavior is quite sensitive in regard to small changes of the ligand system. Starting from the thoroughly investigated complex [Fe(tmpa)(NCS)2] [tmpa = tris(2‐pyridylmethyl)amine, also abbreviated as tpa in the literature] we modified the ligand by increasing systematically the chelate ring sizes from 5 to 6 thus obtaining complexes [Fe(pmea)(NCS)2], [Fe(pmap)(NCS)2], and [Fe(tepa)(NCS)2] [pmea = N,N‐bis[(2‐pyridyl)methyl]‐2‐(2‐pyridyl)ethylamine, pmap = N,N‐bis[2‐(2‐pyridyl)ethyl]‐(2‐pyridyl)methylamine, and tepa = tris[2‐(2‐pyridyl)ethyl]amine]. All complexes were structurally characterized and spin crossover properties were investigated using Mößbauer spectroscopy, magnetic measurements, and IR/Raman analyses. The results demonstrated that only the iron complexes with tmpa and pmea showed spin crossover properties, whereas the complexes with the ligands pmap and tepa only formed high spin complexes. Furthermore, DFT calculations supported these findings demonstrating again the strong influence of ligand environment. Herein the effect of increasing the chelate ring sizes in iron(II) isothiocyanato complexes with tetradentate tripyridyl‐alkylamine ligands is clearly demonstrated.  相似文献   

14.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

15.
《Comptes Rendus Chimie》2008,11(3):307-316
Iron and cobalt complexes are a new family of catalysts for ethylene oligomerization and polymerization. The extensive researches on bis(imino)pyridyl metal complexes have been carried out with the aim of synthesizing their derivatives and finding suitable reaction parameters for the optimum activity. Beyond the modification works of bis(imino)pyridyl metal complexes, several alternative models with similar coordination sphere have been developed in our group. This review article describes our experiences in innovating new models of iron and cobalt complexes as catalysts for ethylene oligomerization and polymerization.  相似文献   

16.
Using ligands based on either an acetylacetonate or a dipyrrin moiety appended with pyridyl groups, a series of novel heteroleptic copper(II) and cobalt(III) complexes combining both chelate units such as (acacpy(2))Cu(dpm-py) and (acacpy(2))Co(dpm-py)(2) (acacpy(2) = 1,3-bis(4-pyridyl)-1,3-propanedionate; dpm-py = 5-(4-pyridyl)dipyrrin) have been prepared and fully characterized. These two complexes were obtained upon reaction of dpm-py with the (acacpy(2))M homoleptic species (M = Cu(II), Co(II)). In the solid state, the (acacpy(2))Cu(dpm-py) complex behaves as a self-complementary metallatecton and leads to the formation of a 1D coordination polymer (CP) through the coordination of a peripheral pyridyl group to the copper centre. Contrastingly, the octahedral (acacpy(2))Co(dpm-py)(2) complex featuring a coordinatively saturated Co(III) centre crystallizes as an isolated mononuclear species. In order to generate heterometallic CPs, both complexes have been used as metallatectons upon their combination with different silver(I) salts. Upon reaction of (acacpy(2))Cu(dpm-py) with Ag(BF(4)) or Ag(TfO), 2- and 3-D heterometallic networks were obtained, respectively. In both cases, sheet type arrangements resulting from the binding of Ag(+) cations by three peripheral pyridyl groups were observed. These 2D sheets are further interconnected through Ag-π interactions with the pyrrolic rings. Under the same conditions, the combination of (acacpy(2))Co(dpm-py)(2) with Ag(TfO) leads to two networks differing by their connectivity patterns and dimensionality. Interestingly, whereas no Ag-π interactions were observed for the 2D network, a combination of coordination bonding with the pyridyl moieties and Ag-π interactions was detected for the 1D architecture.  相似文献   

17.
New enantiopure pyridyl alcohols are efficiently accessible through few synthetic steps from commercially available terpenes, that is, (+)-fenchone, (-)-menthone and (-)-verbenone as well as 2,6-diphenylpyridine. These chelating pyridyl alcohols exhibit flexible pyridyl-phenylene axes, which give rise to P and M conformers. Alkylzincation of the hydroxy groups eliminates equilibria of the conformers and generates alkylzinc complexes with adjusted biaryl axes, as it is demonstrated by NMR studies. These alkylzinc catalysts perform well in the addition of dimethylzinc or diethylzinc to benzaldehyde with yields up to 99% and ee's up to 95%. The adjusted pyridylphenylene conformations in the ligands now control enantioselectivities of the catalysts, which were also analysed by computations at the DFT level.  相似文献   

18.
The iron(II) complexes and with pentadentate pyridyl ligands are stable under physiological conditions and exhibit higher cytotoxicities toward a series of human carcinoma cell lines than cisplatin; can significantly increase intracellular oxidant levels, cleave supercoiled plasmid DNA in vitro without addition of a reductant and induce apoptotic cell death in human cervical epithelioid carcinoma cells (HeLa) as observed in flow cytometric studies.  相似文献   

19.
The synthesis, characterisation and catalytic behaviour of new iron bis(imino)pyridyl complexes containing dendritic wedges, as well as the synthesis of bis(para-hydroxyphenylimino)pyridines is described. The hydroxyl functionality of the bis(para-hydroxyphenylimino)pyridines was used to attach dendritic wedges of the carbosilane type as well as the benzylphenyl ether type. After attachment of the dendritic wedges, complexation of these ligands to iron(II) chloride was achieved. The resulting dendritically functionalised bis(imino)pyridyl iron complexes were tested in the catalytic oligomerisation of ethene.  相似文献   

20.
New iron(II) podand complexes have been prepared, by condensation of 2-(aminomethyl)-2-methyl-1,3-diaminopropane with 3 equiv of a heterocyclic aldehyde in the presence of hydrated Fe[BF(4)](2) or Fe[ClO(4)](2) as templates. The 2-(aminomethyl)-2-methyl-1,3-diaminopropane is prepared in situ by deprotonation of its trihydrochloride salt. The chloride must be removed from these reactions by precipitation with silver, to avoid the formation of the alternative 2,4,6-trisubstituted-7-methyl-1,3,5-triazaadamantane condensation products, or their FeCl(2) adducts. The crystal structures of two 2,4,6-tri(pyridyl)-7-methyl-1,3,5-triazaadamantane-containing species are presented, and contain two different geometric isomers of this tricyclic ring with three equatorial, or two equatorial and one axial, pyridyl substituents. Both structures feature strong C-HX (X = Cl or F) hydrogen bonding from the aminal C-H groups in the triazaadamantane ring. Five iron(II) podand complexes were successfully obtained, all of which contain low-spin iron centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号