首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

2.
Sonication has been widely used in the dispersal of carbon nanotubes (CNTs) in various liquids as well as in their functionalization in aqueous acids. Here, for the first time, we study the sonication of multiwalled CNTs (MWCNTs) in deionized water. Our results indicate an improvement in the aqueous dispersal of MWCNTs as well as an increase in their adhesive interaction with Au substrates. Field emission scanning electron and high-resolution transmission electron microscopies as well as X-ray photoelectron, photoacoustic Fourier transform IR, and Raman spectroscopies have shown this to be due to the production of low concentrations of O-containing functionalizations (alcohol, carbonyl, acid, with the total O concentration being approximately 2%), without damaging the basic CNT structure; this production of functional groups is mirrored by the disappearance of -CH(n) groups existing on the pristine CNTs. These new functional groups are capable of hydrogen bonding, which plays an important role in their aqueous dispersal and enhanced substrate interactions.  相似文献   

3.
Carbon nanotubes (CNTs) possessing unique structure and properties are attractive building blocks for novel materials and devices of important practical interest. However, the insolubility or poor dispersibility of pristine CNTs in common solvents poses a serious obstacle to their further development. To effectively utilize CNTs as building blocks for nanotechnology, CNTs have been covalently and noncovalently functionalized in a number of ways to render them soluble in aqueous or organic solutions. Here, we review recent progress and advances that have been made on dispersion of carbon nanotubes in aqueous and organic media by non‐covalent functionalization with surfactants and polymers.  相似文献   

4.
In this work, graphite encapsulated Fe nanoparticles and thin carbon nanotubes (CNTs) supported on the pristine CNTs, respectively, were synthesized using plasma enhanced chemical vapor deposition via efficiently controlling the flow rate of discharging CH4 and H2 gas. The properties of the obtained hybrid materials were characterized with superconducting quantum interference and field emission measurements. The results showed that the encapsulated Fe nanoparticles had diameters ranging from 1 to 30 nm, and this hybrid nanocomposite exhibited a ferromagnetic behavior at room temperature. Thin CNTs with an average diameter of 6 nm were attached to the surface of the prepared CNTs, which exhibited a lower turn-on field and higher emission current density than the pristine CNTs. The Fe nanoparticles either encapsulated with graphite or used as catalyst for thin CNTs growth were all originated from the pyrolysis of ferrocene.  相似文献   

5.
The handling, dispersion, manipulation, and functionalization of carbon nanotubes and nanopipes often require the use of solvents. Therefore, a good understanding of the wetting properties of the carbon nanotubes is needed. Such knowledge is also essential for the design of nanotube-based nanofluidic devices, which hold the promise of revolutionizing chemical analysis, separation, drug delivery, filtration, and sensing. In this work, we investigated the wetting behavior of individual nanopipes produced by the chemical vapor deposition (CVD) of carbon in porous alumina templates and of thin carbon films produced by the same technique. The carbon pipes and films have the same chemistry and structure as determined by Raman and infrared spectroscopies and, when similarly treated, demonstrate the same qualitative wetting behavior, as determined by optical microscopy. Thus, measurements conducted on the carbon film surface are relevant to the nanopipes. In the case of the nanopipes, filling with various liquids was monitored. Contact angle experiments with both polar (water, glycerol, ethylene glycol, ethanol, tetra-hydro furan, and 2-propanol alcohol) and nonpolar liquids (cyclohexane, hexadecane, poly(dimethylsiloxane), and a fluoro-silicone) were conducted on films using the sessile drop method. The contact angles on the CVD carbon films ranged from 0 to 79 degrees. The exposure of the carbon films to a NaOH solution, typically used to dissolve the alumina template, led to a significant decrease of the contact angle, especially in the case of polar liquids.  相似文献   

6.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   

7.
采用密度泛函理论的GGA/PW91方法对有限长Y型碳纳米管的结构和性质进行了研究. 研究结果表明, 由于缺陷环的影响, Y型碳纳米管与直型管的性质明显不同, 而且, Y型碳纳米管的结构和性质与分支管长度存在一定的关系. 当分支管长度大于1 nm 时, Y型碳纳米管的结构、能隙和电学性质均出现周期性振荡变化的趋势.  相似文献   

8.
Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes.  相似文献   

9.
The reactivities of the pristine and silicon doped (Si‐doped) single‐walled carbon nanotubes (CNTs) toward small gaseous molecules in the atmosphere, such as formaldehyde, carbon monoxide, and hydrogen sulfide, were studied by performing density functional theory calculations. Compared with the physisorptions on the pristine (8, 0) CNT, these small molecules present strong chemical interactions with the Si‐doped (8, 0) tube. Doping intrinsic CNTs with silicon is expected to be a potential strategy for improving the property of pristine CNTs and expanding the application of CNTs in nanoscience and nanotechnology. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

10.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

12.
Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties, especially their outstanding biocompatibility and truly green aspect. In this work, a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated. AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD. The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergic effect of AAILs and CNTs, the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N = 3). Furthermore, the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid. Therefore, AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third- generation enzyme sensors.  相似文献   

13.
Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.  相似文献   

14.
There has been growing interest in the use of modified-carbon-nanotube electrodes in applications such as the electrochemical detection of biologically significant compounds, owing to their apparent "electrocatalytic" properties and ability to enhance oxidative signals. In spite of their salient properties, little work has been done to further examine the reasons for these reported characteristics. In this report, we present clear evidence that the presence of nanographite impurities within carbon nanotubes (CNTs) is responsible for providing the previously reported enhanced electrochemical response. We have demonstrated this effect on homocysteine, N-acetyl-L-cysteine, nitric oxide, and insulin, which are important biological agents in the body. Moreover, we also showed that the influence of nanographite impurities on the electrochemistry of carbon nanotubes is prevalent among a variety of CNTs, such as single-walled CNTs, double-walled CNTs, and few-walled CNTs. Our findings will have a profound influence upon the biomedical applications of CNTs.  相似文献   

15.
Two kinds of hybrids based on diallyl bisphenol A modified bismaleimide (BMI‐BA) and carbon nanotubes (CNTs) or aminated carbon nanotubes (A‐CNTs) were prepared, their static and dynamic mechanical properties were investigated in detail by using impact and flexural measurements as well as dynamic mechanical analysis (DMA). Results show that these mechanical properties of hybrids greatly depended on the nature (or the functional groups on CNTs) and loading in BMI‐BA matrix of hybrids. For example, the BMI‐BA/A‐CNT hybrid with a desirable amount of A‐CNTs has a higher impact strength than the original BMI‐BA resin, while all BMI‐BA/CNT hybrids have lower impact strength than the original BMI‐BA resin. DMA test shows that all hybrids have somewhat lower storage modulus and glass transition temperature than a pure polymer, which maybe attributed to the fact that both CNTs and A‐CNTs shift the curing peak to a higher temperature range and thus decrease the crosslinking density of networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Dynamic surface rearrangement and thermal stability of N-functional groups on carbon nanotubes (CNTs), obtained by functionalization of pristine CNTs with NH(3), were studied by temperature-programmed XPS and MS: a link between the stability of the functional group and decomposition temperature have been established and a conversion into graphitic nitrogen was observed.  相似文献   

17.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

18.
The geometrical structures and field emission properties of pristine and N-doped capped (5,5) single-walled carbon nanotubes have been investigated using first-principles density-functional theory. The structures of N-doped carbon nanotubes are stable under field emission conditions. The calculated work function of N-doped carbon nanotube decreases drastically when compared with pristine carbon nanotube, which means the enhancement of field emission properties. The ionization potentials of N-doped carbon nanotubes are also reduced significantly. The authors analyze the field emission mechanism in terms of energy gap between the lowest unoccupied molecular orbital and the highest occupied molecular orbital, Mulliken charge population, and local density of states. Due to the doping of nitrogen atom, the local density of states at the Fermi level increases dramatically and donor states can be observed above the Fermi level. The authors' results suggest that the field emission properties of carbon nanotubes can be enhanced by the doping of nitrogen atom, which are consistent with the experimental results.  相似文献   

19.
Thin polyetherimide (PEI) films containing 0.1–3 wt.% multi-walled carbon nanotubes (MWCNTs), have been prepared from three types of MWCNTs, namely pristine, oxidized and polymerized ionic liquid (PIL) functionalized CNTs. Oxidized and PIL functionalized CNTs (CNT–PIL) showed better dispersion in the matrix compared to pristine CNTs. For CNT–PIL, alignment of CNTs has been observed in the matrix. Regardless of the type of CNTs, their incorporation led to an increased thermal stability of the polymer matrix. Dynamic mechanical analysis showed that storage modulus increased by up to 25% (3 wt.% CNT–PIL) and an increase in the height of the damping peaks (tan δ). The addition of CNTs did not have any significant influence on the tensile properties and Tg of the polymer, and the electrical conductivity did not decrease in the case of modified CNTs.  相似文献   

20.
We herein report a facile, cost‐competitive, and scalable method for producing viscoelastic conductors via one‐pot melt‐blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non‐volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL‐CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one‐pot melt‐blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene‐b ‐butadiene‐b ‐styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re‐mendable properties. This simple method using cost‐competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号