首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Xia  Xu  Qing-Cai  Cheng  Chuan-Ge  Zhao  Ru-Song 《Chromatographia》2012,75(17):1081-1085

In this paper, a novel mixed ionic liquids-dispersive liquid–liquid microextraction method was developed for rapid enrichment and determination of environmental pollutants in water samples. In this method, two kinds of ionic liquids, hydrophobic ionic liquid and hydrophilic ionic liquid, were used as extraction solvent and disperser solvent, respectively. DDT and its metabolites were used as model analytes and high-performance liquid chromatography with ultraviolet detector for the analysis. Factors that may affect the extraction recoveries, such as type and volume of extraction solvent (hydrophobic ionic liquid) and disperser solvent (hydrophilic ionic liquid), extraction time, sample pH and ionic strength, were investigated and optimized. Under the optimum conditions, the linear range was 1–100 μg L−1, limits of detection could reach 0.21–0.49 μg L−1, and relative standard deviation was 6.01–8.48 % (n = 7) for the analytes. Satisfactory results were achieved when the method was applied to analyze the target pollutants in environmental water samples with spiked recoveries over the range of 85.7–106.8 %.

  相似文献   

2.
3.
Three new dispersive liquid–liquid microextraction (DLLME) methods, air-assisted (AA-DLLME), vortex-assisted (VA-DLLME) and ultrasound-assisted (UA-DLLME), were compared from the point of view of their analytical application for preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers (BTEX) in water samples. In all of these methods, no dispersive solvent is required and dispersion of extractant is carried out by air bubbles, vortex and ultrasound for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively. Advantages and disadvantages of these three liquid phase microextraction methods and their capability in dispersion of a similar extractant phase in sample solutions were comprehensively compared. All other extraction parameters, which have an influence on the microextraction, were also investigated and optimized. Under optimized conditions, analytical figures of merit for the three techniques were determined and compared. It was found that the limit of detection of the three methods is almost the same, while AA-DLLME has a wider linear dynamic range and the shortest analysis time. Enrichment factors of 182, 45 and 245 were achieved for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively.  相似文献   

4.
A highly efficient ultrasonic-assisted dispersive liquid–liquid microextraction (UA-DLLME) procedure coupled with gas chromatography–mass spectrometry was developed for simultaneous analysis of multiclass herbicides with endocrine-disrupting properties in environmental water samples. The parameters affecting the method’s extraction efficiency, such as the types and volumes of the extractant and dispersive solvents, sample pH, and salt concentration, were systematically optimized by response surface methodology based on central composite design to achieve excellent recoveries for multiclass herbicides. The final UA-DLLME protocol involved 115.6 µL of chloroform (extractant), 861.5 µL of ethanol (dispersive solvent), 5.0 mL of water samples, pH 10.0, and 4.3% NaCl solution. The performance of the developed UA-DLLME was compared with that of conventional solid-phase extraction (SPE). Under optimal extraction conditions, UA-DLLME exhibited a higher enrichment factor and greater sensitivity than SPE, with limits of detection and limits of quantification of 0.004–0.024 and 0.013–0.079 µg L?1, respectively, for seawater samples. The accuracy and precision of UA-DLLME were satisfactory for seawater samples spiked at three levels (0.2, 2.5, and 5.0 µg L?1). Average recoveries ranging from 82.3 to 101.8% were achieved, with relative standard deviations lower than 12.8%. The proposed analytical method was successfully applied to the simultaneous determination and quantification of 17 herbicides in environmental river and seawater samples.  相似文献   

5.
In this study, a simple and efficient method has been developed to analyze pesticides in water samples using ultrasonic-assisted dispersive liquid–liquid microextraction (UA-DLLME) combined with gas chromatography-flame ionization detection (GC-FID). Several parameters, including type and volume of extractant and dispersant, extraction time, and amount of salt on extraction performance, were optimized in detail. A mixture of acetonitrile (1.0 mL, dispersant) and carbon tetrachloride (15 μL, extractant) was used for extraction. Under optimal conditions, enrichment factors were obtained between 315 and 1153. The linearity of the method ranged from 1 to 100 μg L?1 with correlation coefficients ≥0.9990. Limits of detection (S/N = 3) ranged between 0.09 and 0.57 μg L?1, depending on the compounds. Relative standard deviations were <8.0 % (n = 5) for both intra- and inter-day analyses. The proposed method was successfully applied for the preconcentration and determination of pesticides in water samples (river water, tap water, and lake water) with recoveries that varied from 90.5 to 107.7 %.  相似文献   

6.
Task-specific ionic liquid dispersive liquid–liquid microextraction (TSIL-DLLME) is a simple and rapid preconcentration approach for the measurement of cadmium in serum and blood samples of human subjects. In this method a novel task-specific ionic liquid, trioctylmethyl ammonium thiosalicylate (TOMATS), which has dual characteristics as a chelating agent and extractive solvent, was investigated. TOMATS complexes with Cd due to the chelating effect of the ortho-positioned carboxylate relative to the thiol functionality. The assessment of the optimum values of variables including the pH, amount of reagents (TOMATS, diluents, Triton X114, and back extracting acid solution), temperature, and incubation time, which affect the recoveries of analyte by TSIL-DLLME method were studied. After enrichment experiments, acidic solution was used to back extract the metal ions from the ionic liquid rich phase and with determination by electrothermal atomic absorption spectrometry. Using the optimal experimental conditions, the limit of detection (3?s), precision (relative standard deviation), preconcentration, and enhancement factors of developed method for Cd were found to be 0.05?µg/L, greater than 5%, 62.5, and 52.8, respectively. To check the accuracy of the developed method, certified reference material of serum and blood were analyzed by the developed method, and the measured values of Cd were in good agreement with the certified values. The developed method was applied successfully to determine Cd in blood and serum samples of lymphatic cancer patients relative to healthy controls.  相似文献   

7.
8.
A new method, termed dispersive liquid–liquid microextraction (DLLME), was developed for the extraction and pre-concentration of estrone (E1) and 17β-estradiol (E2) in water samples. The samples were extracted by 0.50 mL methanol (disperser solvent) containing 25.0 μL tetrachloroethane (extraction solvent). Important factors such as the volume and type of extraction and disperser solvent, extraction time and salt effect were studied. Under optimum conditions, the enrichment factors and the limits of detection were 347 and 0.2 ng mL?1 for E1, and 203 and 0.1 ng mL?1 for E2, respectively. The linear range was 0.5–5,000 ng mL?1. Compared to other methods, DLLME–LC–VWD has advantages for E1 and E2 analysis in water: high enrichment factor, low cost, simplicity, quick and easy operation.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) assisted with salting-out was applied for the determination of five aromatic amines in water samples by using gas chromatography with flame ionization detection. In this extraction method, several factors influencing the extraction efficiency of the target analytes, such as extraction and disperser solvent type and their volume, salt addition and amount, and pH, were studied and optimized. Under the optimal DLLME conditions, good linearity was observed in the range of 4–1,000 ng mL?1 with the RSDs from 1.2 to 7.9 %. The LODs based on S/N of 3 ranged from 0.2 to 3.4 ng mL?1 and the enrichment factors ranged from 207 to 4,315. The proposed method was successfully applied to the water samples collected from the tap and the lake, and the relative recoveries were in the range of 87.7–108.4 %.  相似文献   

10.
《Analytical letters》2012,45(11):1787-1801
A rapid and novel two-step dispersive liquid–liquid microextraction and dispersive micro-solid phase extraction method was established for the separation and enrichment of trace cadmium, nickel, and copper in food and environmental water prior to determination by inductively coupled plasma-mass spectrometry (ICP-MS). In the first microextraction step, carbon tetrachloride was employed to extract metal-diethyldithiocarbamate chelates from aqueous solution with ultrasound. In the following step, Fe3O4 magnetic nanoparticles were added and used to collect the analytes in the organic solvent. The sample pH, type and volume of extraction solvent, mass of magnetic nanoparticles, concentration of the chelating agent, concentration of sodium chloride, and sonication time were optimized. The linear dynamic range was from 0.01 to 20 micrograms per liter with correlation coefficients between 0.9990 and 0.9992. Enrichment factors were 78, 79, and 81 for cadmium, nickel, and copper, respectively. The limits of detection for cadmium, nickel, and copper were 0.007, 0.009, and 0.017 micrograms per liter, with relative standard deviations from 1.1 to 2.6 percent. The developed method was validated by the determination of cadmium, nickel, and copper in rice and mussel certified reference materials, food, and environmental water with satisfactory results.  相似文献   

11.
Dekun Hou  Yan Guan  Xiaowei Di 《Chromatographia》2011,73(11-12):1057-1064
In this study, dispersive liquid?Cliquid microextraction (DLLME) combined with ultra high pressure liquid chromatography (UHPLC)?Ctunable ultraviolet detection (TUV), was developed for pre-concentration and determination of trace levels of tetracyclines, including 4-epitetracycline, 4-epichlortetracycline, doxycycline, chlortetracycline oxytetracycline, tetracycline, 4-epianhydrotetracycline and anhydrotetracycline, in aqueous samples. La (III) was used as the chelating agent to form a hydrophobic complex compound with tetracyclines, followed by extraction with ionic liquids. Some important parameters that may affect extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.1?C200 ??g L?1, with correlation coefficients (r 2) >0.992. The limits of detection and quantification were 0.031?C0.079 and 0.10?C0.26 ??g L?1, respectively. The spiked recoveries of eight target compounds in river water, fishpond water and hog leachate were achieved in the range of 62.6?C96.3, 58.9?C94.5, 55.1?C86.1%, respectively.  相似文献   

12.
A fast and effective preconcentration method for extraction of organochlorine pesticides (OCPs) was developed using a homogeneous liquid–liquid extraction based on phase separation phenomenon in a ternary solvent (water/methanol/chloroform) system. The phase separation phenomenon occurred by salt addition. After centrifugation, the extraction solvent was sedimented in the bottom of the conical test tube. The OCPs were transferred into the sedimented phase during the phase separation step. The extracted OCPs were determined using gas chromatography–electron capture detector. Several factors influencing the extraction efficiency were investigated and optimized. Optimal results were obtained at the following conditions: volume of the consolute solvent (methanol), 1.0 mL; volume of the extraction solvent (chloroform), 55 μL; volume of the sample, 5 mL; and concentration of NaCl, 5 % (w/v). Under optimal conditions, the preconcentration factors in the range of 486–1,090, the dynamic linear range of 0.01–100 μg L?1, and the limits of detection of 0.001–0.03 μg L?1 were obtained for the OCPs. Using internal standard, the relative standard deviations for 1 μg L?1 of the OCPs in the water samples were obtained in the range of 4.9–8.6 % (n = 5). Finally, the proposed method was successfully applied for extraction and determination of the OCPs in water and fruit samples.  相似文献   

13.
《Analytical letters》2012,45(14):2214-2231
Abstract

A new simple and sensitive method has been proposed for rapid determination of trace levels of silver in environmental water samples, using dispersive liquid–liquid microextraction (DLLME) prior to its microsample introduction-flame atomic absorption spectrometry. Under the optimum conditions, the linear range was 0.1–7 µg L?1 and limit of detection was 0.018 µg L?1. The relative standard deviation for 0.50 and 5.00 µg L?1 of silver in water sample was 4.0 and 1.7%, respectively. The relative recoveries of silver from tap, well, river, and seawater samples at spiking levels of 1.00 and 5.00 µg L?1 were in the range of 86.4–98.6%.  相似文献   

14.
Simultaneous derivatization and dispersive liquid–liquid microextraction technique for gas chromatographic determination of fatty acids in water samples is presented. One hundred microlitre of ethanol:pyridine (4:1) were added to 4 mL aqueous sample. Then a solution containing 0.960 mL of acetone (disperser solvent), 10 μL of carbon tetrachloride (extraction solvent) and 30 μL of ethyl chloroformate (derivatization reagent) were rapidly injected into the aqueous sample. After centrifugation, 1 μL sedimented phase with the analytes was analyzed by gas chromatography. The effects of extraction solvent type, derivatization, extraction, and disperser solvents volume, extraction time were investigated. The calibration graphs were linear up to 10 mg L?1 for azelaic acid (R 2 = 0.998) and up to 1 mg L?1 for palmitic and stearic acids (R 2 = 0.997). The detection limits were 14.5, 0.67 and 1.06 μg L?1 for azelaic, palmitic, and stearic acids, respectively. Repeatabilities of the results were acceptable with relative standard deviations (RSD) up to 13%. A possibility to apply the proposed method for fatty acids determination in tap, lake, sea, and river water was demonstrated.  相似文献   

15.
Magnetic nanoparticle-assisted solid-phase dispersion (MMSPD) combined with dispersive liquid–liquid microextraction (DLLME) prior to high performance liquid chromatography with fluorescence detector (HPLC–FLU) is presented for determination of ultra trace Bisphenol A (BPA) in water. Magnetic multi-walled carbon nanotubes (MMWCNTs) were synthesized for the adsorption of BPA in water. Ultra trace BPA in water was transferred into the elute solvent by the MMSPD and further concentrated into trace volume extraction solvent by the DLLME. The limit of detection and limit of quantitation were 0.003 and 0.01 µg L?1, respectively. Good linearity of BPA was found, ranging from 0.01 to 10 µg L?1, with good squared regression coefficient (R 2) of 0.9999. Additionally, relative recoveries were 83.1 and 95.9% for two environmental water samples spiked with 0.20 µg L?1 BPA, respectively. All results showed that the MMWCNTs nanoparticle-assisted MMSPD–DLLME–HPLC–FLU method was simple and reliable for the determination of ultra trace BPA in environmental water.  相似文献   

16.
In this study, in-situ ionic liquid based dispersive liquid?liquid microextraction method for enrichment of tetracyclines before liquid chromatographic analysis has been improved. A 1-benzyl-3- methylimidazolium chloride was used as an ionic liquid. To increase extraction efficiency, some optimization parameters (amount of ammonium hexafluorophoshate, extraction time, centrifugation time, ratio of ionic liquid/salt) were investigated. At optimized conditions, enrichment factors of four tetracycline antibiotics (tetracycline, chlortetracycline, methacycline, doxycycline) were between 25 and 98. The residues of tetracyclines were not found in the studied real samples. For the accuracy of the method, the concentration of 50 and 250 μg/L of standard tetracycline mixture solutions were spiked to the blank real milk, honey and egg samples and the percentage recoveries were obtained in the range of 75.8–109.7%.  相似文献   

17.
An efficient, simple, and fast method based on ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) followed by magnetic solid-phase extraction (MSPE) was developed as a new technique for extracting and purifying hexachlorophene (HCP) in cosmetics prior to high-performance liquid chromatography (HPLC) determination. In this method based on IL-DLLME and MSPE, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) is used as the extraction solvent and Fe3O4 nanoparticles are used to remove hydrophobic additives in the cosmetics by physical adsorption. The main parameters affecting the efficiency of the IL-DLLME and MSPE of HCP were investigated and optimized. Under the optimum conditions, the method was linear in the range 0.5–40 µg mL?1 with a correlation coefficient (R 2) of 0.9976 and had a detection limit of 0.14 µg mL?1 at a signal-to-noise ratio (S/N) of 3. The recoveries of HCP in three cosmetic samples using the proposed method were in the range 74.5–97.7%, and the relative standard deviations (RSD, n = 5) were in the range 3.8–6.7%. The developed method was successfully applied to the determination of HCP in cosmetics.  相似文献   

18.
A novel method, dispersive liquid–liquid microextraction coupled with liquid chromatography-variable wavelength detector (LC-VWD), has been developed for the determination of chloramphenicol (CAP) in honey. A mixture of extraction solvent (30 μL 1,1,2,2-tetrachloroethane) and dispersive solvent (1.00 mL acetonitrile) were rapidly injected by syringe into a 5.0 mL real sample for the formation of cloudy solution, the analyte in the sample was extracted into the fine droplets of C2H2Cl4. After extraction, phase separation was performed by centrifugation and the enriched analyte in the sedimented phase was determined by LC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2,000 μg kg?1 for target analyte. The enrichment factor for CAP was 68.2, and the limit of detection (S/N = 3) were 0.6 μg kg?1. The relative standard deviation (RSD) for the extraction of 10 μg kg?1 of CAP was 4.3% (= 6). The main advantages of method are high speed, high enrichment factor, high recovery, good repeatability and extraction solvent volume at μL level. Honey samples were successfully analyzed using the proposed method.  相似文献   

19.
Dispersive liquid–liquid microextraction (DLLME) for extraction and preconcentration of phenoxyacetic acid herbicides in water samples is described. After adjusting the pH to 1.5, the sample was extracted in the presence of 10% w/v sodium chloride by injecting 1 mL acetone as disperser solvent containing 25 μL of chlorobenzene as extraction solvent. The effect of parameters, such as the nature and amount of extraction and disperser solvents, ionic strength of the sample, pH, temperature and extraction time were optimized. DLLME was followed by LC for the determination of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methyl phenoxyacetic acid. The method had good linearity and a wide linear dynamic range (0.5–750 μg L?1) with a detection limit of 0.16 μg L?1 for both the PAAs, making it suitable for their determination in water samples.  相似文献   

20.

Rapid, inexpensive, and efficient sample-preparation by dispersive liquid–liquid microextraction (DLLME) then gas chromatography with flame ionization detection (GC–FID) have been used for extraction and analysis of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) in water samples. In this extraction method, a mixture of 25.0 μL carbon disulfide (extraction solvent) and 1.00 mL acetonitrile (disperser solvent) is rapidly injected, by means of a syringe, into a 5.00-mL water sample in a conical test tube. A cloudy solution is formed by dispersion of fine droplets of carbon disulfide in the sample solution. During subsequent centrifugation (5,000 rpm for 2.0 min) the fine droplets of carbon disulfide settle at the bottom of the tube. The effect of several conditions (type and volume of disperser solvent, type of extraction solvent, extraction time, etc.) on the performance of the sample-preparation step was carefully evaluated. Under the optimum conditions the enrichment factors and extraction recoveries were high, and ranged from 122–311 to 24.5–66.7%, respectively. A good linear range (0.2–100 μg L−1, i.e., three orders of magnitude; r 2 = 0.9991–0.9999) and good limits of detection (0.1–0.2 μg L−1) were obtained for most of the analytes. Relative standard deviations (RSD, %) for analysis of 5.0 μg L−1 BTEX compounds in water were in the range 0.9–6.4% (n = 5). Relative recovery from well and wastewater at spiked levels of 5.0 μg L−1 was 89–101% and 76–98%, respectively. Finally, the method was successfully used for preconcentration and analysis of BTEX compounds in different real water samples.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号