首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kokot  Zenon J.  Matysiak  Jan 《Chromatographia》2009,69(11):1401-1405

The aim of the study was to develop an LC method for honeybee venom analysis, using cytochrome c as an internal standard. The SynChropack C8 6.5 μm, 4.6 × 100 mm column was applied. The bee venom was separated by linear gradient 5–80% B at 30 min (eluent A—0.1% TFA in water, eluent B—0.1% TFA in acetonitrile:water (80:20)). The flow rate of mobile phase was maintained at 1 mL min−1, injection volume: 40 μL, separation temperature: 25 °C. The analysis was monitored at 220 nm. Several honeybee venom constituents were separated and the content of four of them (apamine, mast cell degranulating peptide, phospholipase A2 and melittin) were determined. By applying this methodology differences in chemical composition of honeybee venom were evaluated. In order to confirm the data obtained, the following steps and parameters were taken into account for the validation of the method: selectivity, precision (injection repeatability, analysis repeatability), accuracy (recovery), linearity and operating range, limit of detection and limit of quantitation. All steps of validation proved that the developed analytical procedure was suitable for its intended purpose (standardization). Due to its simplicity, the developed method can be easily automated and incorporated into routine operations both in the bee venom identification, quality control and assay tests.

  相似文献   

2.
The aim of the study was to develop an LC method for honeybee venom analysis, using cytochrome c as an internal standard. The SynChropack C8 6.5 μm, 4.6 × 100 mm column was applied. The bee venom was separated by linear gradient 5–80% B at 30 min (eluent A—0.1% TFA in water, eluent B—0.1% TFA in acetonitrile:water (80:20)). The flow rate of mobile phase was maintained at 1 mL min?1, injection volume: 40 μL, separation temperature: 25 °C. The analysis was monitored at 220 nm. Several honeybee venom constituents were separated and the content of four of them (apamine, mast cell degranulating peptide, phospholipase A2 and melittin) were determined. By applying this methodology differences in chemical composition of honeybee venom were evaluated. In order to confirm the data obtained, the following steps and parameters were taken into account for the validation of the method: selectivity, precision (injection repeatability, analysis repeatability), accuracy (recovery), linearity and operating range, limit of detection and limit of quantitation. All steps of validation proved that the developed analytical procedure was suitable for its intended purpose (standardization). Due to its simplicity, the developed method can be easily automated and incorporated into routine operations both in the bee venom identification, quality control and assay tests.  相似文献   

3.
A highly selective and sensitive liquid chromatographic tandem mass spectrometric (LC-MS–MS) method was developed and validated for the quantitation and pharmacokinetic study of niacin (NA) and its two metabolites niacinamide (NAM) and nicotinuric acid (NUR) in human plasma. Protein precipitation with 14% perchloric acid solution was selected for sample preparation, and ganciclovir was used as an internal standard. Separation was on a Phenomenex Curosil-PFP (250 mm × 4.6 mm, 5 μm) column by a multiple steep steps linear gradient elution with mobile phase consisting of water and methanol, both containing 0.1% formic acid, pumped at a flow rate of 1 mL min?1. The determination was optimized and carried out with positive electrospray ionization by selective multiple reaction monitoring. The method was linear in the concentration range of 15–2,000 ng mL?1 for NA, 70–2,000 ng mL?1 for NAM and 10–2,000 ng mL?1 for NUR, by standard addition calibration. The application of LC-MS–MS was demonstrated for the specific and quantitative analysis of NA, NAM and NUR in human plasma from a pharmacokinetic study in 12 healthy Chinese volunteers treated with three incremental doses of niacin extended-release/lovastatin tablets and an additional steady-state regime.  相似文献   

4.
Forced degradation study on gliclazide was conducted under the conditions of hydrolysis, oxidation, dry heat and photolysis and an isocratic stability-indicating HPLC-UV method was developed and validated. All the seven degradation products (I–VII) formed under different conditions were optimally resolved on a C18 column with mobile phase composed of 40% acetonitrile and 60% ammonium acetate solution (0.025 M, pH 3.5) at a flow rate of 0.25 mL min?1 using 235 nm as detection wavelength. The method was linear between 5–500 μg mL?1 drug concentrations. The %RSD of intra- and inter-day precision studies was <1 and <2% respectively. Excellent recoveries (99.81–100.97%) proved the method sufficiently accurate. Each peak resolved always with a resolution of >1.90 indicating the method to be rugged enough. The method was used to study the drug degradation behaviour under the forced conditions. Four degradation products (I–IV) were formed in 0.1 N HCl and water whereas only I and III were formed in 3% H2O2. Two new products V and VI in addition to I, III and IV were formed in 0.1 N NaOH. The drug was stable to thermal and photolytic decomposition. The degradation behaviour in water and 0.1 N NaOH was similar under dark and light conditions but a new product VII was formed in 0.01 N HCl in light. In general, the rate of degradation was accelerated by the light. The method was applied successfully in stability testing of gliclazide tablets.  相似文献   

5.
A rapid high-performance liquid chromatography UV method and a simple sample preparation for analyzing iohexol in canine plasma, for evaluating glomerular filtration rate (GFR) and intestinal permeability, were developed and validated. Trifluoroacetic acid (TFA) was used for protein precipitation and iohexol extraction from plasma, followed by vortex mixing and centrifugation. As an internal standard, 4-aminobenzoic acid (para-aminobenzoic acid, PABA) was added. The supernatant (5 μL) was injected into a Zorbax SB-C18 LC column maintained at 50 °C. The mobile phase of the LC method was a water–methanol gradient at pH 3.0 adjusted with TFA. Fast LC measurement was achieved by using a rapid-resolution LC technique. Total run time was 13 min, and UV wavelength was set at 246 nm. Precision of the method was 0.2–9.0%, depending on the iohexol concentration in plasma. Recovery of iohexol from plasma was over 90%, and recovery of the internal standard 99.1 ± 1.4%. The calibration curve was linear (r = 0.9997) over iohexol concentrations of 2.5–150 μg mL?1 (n = 5). This method is fast, simple, reliable and applicable in clinical settings.  相似文献   

6.
Sequestration of uranium from simulated sea water and reverse osmosis concentrates by the marine cyanobacterium, Synechococcus elongatus was assessed. Short term experiments established removal of 90–98 % uranium by the strain from simulated sea water containing 13 nM uranyl carbonate at pH 7.8, resulting in a loading of 7–42 μg U g?1 over a period of 1–5 days respectively. Long term experiments involving repeated exposure of Synechococcus biomass to fresh simulated sea water every third day, showed a loading of 2,960 μg U g?1 in 4 weeks. Nearly 85–90 % of cell bound uranium could be desorbed using 0.1 N HCl. The organism could sequester uranium (13,306 μg U g?1 in 24 h) from aqueous solutions supplemented with 0.6 M NaCl and 21 μM [UO2(CO3)2]2? at pH 7.8. The results demonstrate noteworthy potential of this organism for harnessing uranium from marine environments.  相似文献   

7.
A sensitive LC–MS–MS method with electrospray ionization has been developed for determination of nikethamide in human plasma. After addition of atropine as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 mm × 2.1 mm, 5 μm particle, Agilent Zorbax SB-C18 column, with 45:55 (v/v) methanol–water containing 0.1% formic acid as mobile phase. LC–MS–MS was performed in multiple reaction monitoring mode using target fragment ions m/z 178.8 → 107.8 for nikethamide and m/z 289.9 → 123.8 for the internal standard. Calibration plots were linear over the range of 20.0–2,000 ng mL?1. The lower limit of quantification was 20.0 ng mL?1. Intra-day and inter-day precisions were better than 4.2 and 6.1%, respectively. Mean recovery of nikethamide from human plasma was in the range 65.3–71.1%.  相似文献   

8.
Meropenem is a broad-spectrum antibiotic, often used for the empirical treatment of infections in critically ill patients with acute kidney injury. Meropenem has clinically insignificant protein binding and, as a carbapenem antibiotic, shows time-dependent bacterial killing, meaning that the unbound or free antibiotic concentration in blood should be maintained above the minimal inhibitory concentration of the pathogen for at least 40 % of the dosing interval. We developed and validated simple chromatographic methods by ultra-performance liquid chromatography-tandem mass spectrometry to measure plasma, filtrate-dialysate, and urine concentrations of meropenem. Chromatographic separation was achieved using an Acquity® UPLC® BEHTM (2.1?×?100 mm id, 1.7 μm) reverse-phase C18 column, with a water/acetonitrile linear gradient containing 0.1 % formic acid at a 0.4-mL/min flow rate. Meropenem and its internal standard (ertapenem) were detected by electrospray ionization mass spectrometry in positive ion multiple reaction monitoring mode. The limits of quantification were 0.27, 0.24, and 1.22 mg/L, and linearity was observed between 0.27–150, 0.24–150, and 1.22–2,000 mg/L for plasma, filtrate-dialysate, and urine samples, respectively. Coefficients of variation and relative biases were less than 13.5 and 8.0 % for all biological fluids. Recovery values were greater than 68.3 %. Evaluation of the matrix effect showed ion suppression for meropenem and ertapenem. No carry-over was observed. The validated methods are useful for both therapeutic drug monitoring and pharmacokinetic studies. It could be applied to daily clinical laboratory practice to measure the concentration of meropenem in plasma, filtrate-dialysate, and urine.
Figure
Meropenem chemical structures  相似文献   

9.
A highly sensitive liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method is developed to quantitate phenacetin and its metabolite paracetamol in rabbit plasma. The analytes and internal standard oxazepam are extracted from plasma by liquid–liquid extraction using ethyl acetate, and separated on a Zorbax SB-C18 column (2.1 mm × 150 mm, 5 μm) using acetonitrile–0.1% formic acid in water (40:60 v/v) at a flow of 0.4 mL min?1. Detection is carried out by multiple reaction monitoring on a ion-trap LC-MS-MS system with an atmospheric pressure chemical ionization interface. The assay is linear over the range 4–1,600 ng mL?1 for phenacetin and 3–2,000 ng mL?1 for paracetamol, with a lower limit of quantitation of 4 ng mL?1 for phenacetin and 3 ng mL?1 for paracetamol. Intra- and inter-day precision are less than 7.1% and the accuracy are in the range 97.3–103.5%. The validated method is successfully used to analyze the drug in samples of rabbit plasma for pharmacokinetic study.  相似文献   

10.
A novel 1,1-cyclobutanedicarboxylato-8-hydroxyquinolinatopalladate(II), Na[Pd(8-QO)(cbdca)] (8-QO = 8-hydroxyquinoline and cbdca = 1,1-cyclobutanedicarboxylate) has been designed and synthesized. The structure of the complex has been characterized by elemental analysis, molar conductance, FT-IR, UV–Vis, 13C NMR, 1H NMR spectroscopy. The cytotoxic activities of the complex have been tested against human foreskin fibroblast normal cell line, HFFF2 and two human breast cancer cell lines, T47D and MCF-7 by MTT assay techniques. The binding properties of the antitumor complex with calf thymus DNA (ctDNA) have been investigated under physiological condition in Tris–HCl buffer solution at pH 7.0 by absorption spectroscopy, fluorescence titration spectra, EB displacement and gel chromatography studies. All these results demonstrate that the water soluble complex can cooperatively bind to ctDNA at low concentrations through a static quenching procedure. Thermodynamic parameters were calculated according to Van’t Hoff equation which indicated that hydrogen bond and van der Waals force play predominant roles in the binding process. Finally, the results of molecular docking calculations clarify the binding mode which is in good accordance with experimental results.  相似文献   

11.
Benzoylthiourea derivatives (N,N-diphenyl-N′-(3-methylbenzoyl)thiourea and diphenyl-N′-(4-methylbenzoyl)thiourea) were impregnated onto silica gel. The preconcentration of uranium(VI) from aqueous solution was investigated. Extraction conditions were optimized in batch method prior to determination by uv–visible absorption spectrometry using arsenazo(III). The optimum pH for quantitative adsorption was found as 3–7. Quantitative recovery of uranium (VI) was achieved by stripping with 0.1 mol L?1 HCl. Equilibration time was determined as 30 min for 99% sorption of U(VI). Under optimal conditions, dynamic linear range of for U(VI) was found as 0.25–10 μg mL?1. The relative standard deviation as percentage and detection limit were 5.0% (n = 10) for 10 μg mL?1 U(VI) solution and 8.7 ng mL?1, respectively. The method was employed to the preconcentration of U(VI) ions in soil and tap water samples.  相似文献   

12.
Extraction and determination of estrogens in water samples were performed using alcoholic-assisted dispersive liquid–liquid microextraction (AA-DLLME) and high-performance liquid chromatography (UV/Vis detection). A Plackett–Burman design and a central composite design were applied to evaluate the AA-DLLME procedure. The effect of six parameters on extraction efficiency was investigated. The factors studied were volume of extraction and dispersive solvents, extraction time, pH, amount of salt and agitation rate. According to Plackett–Burman design results, the effective parameters were volume of extraction solvent and pH. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 220 μL 1-octanol as extraction solvent, 700 μL ethanol as dispersive solvent, pH 6 and 200 μL sample volume. Linearity was observed in the range of 1–500 μg L?1 for E2 and 0.1–100 μg L?1 for E1. Limits of detection were 0.1 μg L?1 for E2 and 0.01 μg L?1 for E1. The enrichment factors and extraction recoveries were 42.2, 46.4 and 80.4, 86.7, respectively. The relative standard deviations for determination of estrogens in water were in the range of 3.9–7.2 % (n = 3). The developed method was successfully applied for the determination of estrogens in environmental water samples.  相似文献   

13.
A simple and accurate flow injection analysis system coupled with spectrophotometric detector was developed for preconcentration and determination of europium(III) in aqueous samples. The developed flow system includes a europium preconcentration step in a column packed with Amberlite XAD-4 resin impregnated with nalidixic acid at pH 7.0. The europium complex was desorbed from the resin by 0.1 mol L?1 HCl and mixed with arsenazo-III solution (0.05 % solution in 0.1 mol L?1 HCl) and taken to the flow through cell of spectrophotometer where its absorbance was measured at 661 nm. The optimum preconcentration system, chemical and FIA variables were investigated. The preconcentration factors obtained were 115 and 500, detection limits of 0.43 and 0.1 μg L?1, sample throughputs of 40 and 10 were obtained for preconcentration time of 60 and 300 s respectively. The proposed system showed good precision and accuracy with relative standard deviation of 1.5 %. The method has been applied to the determination of europium(III) in real water samples and certified reference material IAEA-SL-1 (Lake sediment).  相似文献   

14.
The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris–tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). For comparison, denaturing PAGE based on Tris–glycine and Tris–tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris–glycine PAGE but detection of metals by LA–ICP–MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues—achieving the best extraction and characterization of the proteins while maintaining the integrity of metal–protein binding in the plankton sample. Use of 25 mmol?L?1 Tris–HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.  相似文献   

15.

A simple, reproducible, and efficient liquid chromatographic method was developed with UV detection. Water (0.05% TFA):acetonitrile (0.05% TFA) was used as the mobile phase in a gradient system for the determination of procyanidin B2 (PB2) and epicatechin (EC) in the bark of Guazuma ulmifolia Lam. The analysis was performed using a Phenomenex Gemini RP C18 column (5 μm) as stationary phase, at 30 °C, with a flow rate of 0.8 mL min−1, at a wavelength of 210 nm for detection and determination. The main validation parameters of the method were also determined. Calibration curves were found to be linear, with ranges of 20.00–150.00 (PB2) and 10.00–110.00 μg mL−1 (EC). The correlation coefficients of linear regression analysis were between 0.9981 and 0.9988, and the detection limits were between 2.89 and 2.54 μg mL−1. The contents of PB2 and EC were successfully determined, with satisfactory reproducibility and recovery. Recoveries of the PB2 and EC were 103.00 and 104.01%, respectively. The method was successfully applied to the determination of procyanidins in the bark of G. ulmifolia.

  相似文献   

16.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using reduced graphene oxide (RGO) as sorbent was developed for the preconcentration of trace amounts of zinc (Zn) to its determination by flame atomic absorption spectrometry. Zinc could be adsorbed quantitatively on RGO in the pH range of 1–9, and then eluted completely with 0.5 mL of 0.1 mol L?1 HCl. Some effective parameters on the extraction were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 0.2–15 μg L?1 with a detection limit of 0.14 μg L?1 with an enrichment factor of 100.12. The relative standard deviation for ten replicate measurements of 10 μg L?1 of Zn was 0.58 %, respectively. The proposed method was successfully applied in the analysis of rock and vegetable samples. Good spiked recoveries over the range of 99.9–100 % were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

17.
A very sensitive, selective and simple flow injection time-based method was developed for on-line preconcentration and determination of thorium(IV) at micro g L–1 levels in environmental samples. The system operation was based on thorium(IV) ion retention at pH 4.0 in the minicolumn at a flow rate of 15.2 mL min–1. The trapped complex was then eluted with 3.6 mol L–1 HCl at a flow rate of 4.9 mL min–1. The amount of thorium(IV) in the eluate was measured spectrophotometrically at 651 nm using arsenazo-III solution (0.05 % in 3.6 mol L–1 HCl stabilized with 1 % triton X-100, 4.9 mL min–1) as colorimetric reagent. All chemical, and flow injection variables were optimized for the quantitative preconcentration of metal and a study of interference level of various ions was also carried out. The system offered low backpressure and improved sensitivity and selectivity. At a preconcentration time of 60 s and a sample frequency of 40 h–1, the enhancement factor was 97, the detection limit was 0.25 μg L–1, and the precision expressed as relative standard deviation was 1.08 % (at 50 μg L–1), whereas for 300 s of the preconcentration time and a sample frequency of 10 h–1, the enhancement factor of 357, the detection limit (3σ) of 0.069 μg L–1 and the precision of 1.32 % (at 10 μg L–1) was reported. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference material IAEA-SL-1 (Lake Sediment) and spiked water samples.  相似文献   

18.
Zhang  Chunhua  Wu  Huiqin  Huang  Xiaolan  Zhu  Zhixin  Luo  Huitai  Huang  Fang  Lin  Xiaoshan 《Chromatographia》2012,75(9-10):499-511

A sensitive and selective method for simultaneous determination of 29 toxic alkaloids in human blood and 31 in urine using high-performance liquid chromatography–electrospray ionization-tandem mass spectrometry was developed and validated. The samples were diluted with 0.1 mol L−1 HCl, and the target alkaloids were purified by solid phase extraction. The separation of 31 alkaloids was carried out on a C18 column using a gradient mobile phase with 10 mmol L−1 ammonium formate in water with 0.1% formic acid and methanol at the rate of 0.25 mL min−1. The triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the dynamic multiple reactions monitoring mode (dynamic MRM) to detect the ion transitions of 31 alkaloids. The calibration curves were linear over a range of 0.5–400, 1–400, or 4–400 μg L−1 for target alkaloids in human blood and urine, and the correlation coefficients (r 2) was higher than 0.9943. The limit of determination and limit of quantification were 0.2–1 and 0.5–4 μg L−1 for blood and urine, respectively. The only exceptions were sanguinarine and chelerythrine in human blood. All the target alkaloids were stable under the test condition. In addition, the solvent effect and reconstituted solution were investigated. The method was validated and proved to be accurate and precise over the studied concentrations and suitable for poisoning diagnosis and forensic toxicology.

  相似文献   

19.
Solid-supported liquid–liquid extraction was optimized to extract the chemical warfare agents and their non-toxic analogues from water. The developed method was compared to the conventionally used liquid–liquid extraction. This method yielded high recoveries (70–80%) of non-toxic analogues of chemical warfare agents and good recoveries (65–75%) of the nerve agent sarin and Lewisite-III. The limits of detection of non-toxic analogues of CWAs, and toxic sarin and Lewisite-III, in selected ion monitoring and full scan mode, varied from 0.01 to 0.5 μg mL?1 and 0.1 to 1.0 μg mL?1 respectively.  相似文献   

20.

Rapid, inexpensive, and efficient sample-preparation by dispersive liquid–liquid microextraction (DLLME) then gas chromatography with flame ionization detection (GC–FID) have been used for extraction and analysis of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) in water samples. In this extraction method, a mixture of 25.0 μL carbon disulfide (extraction solvent) and 1.00 mL acetonitrile (disperser solvent) is rapidly injected, by means of a syringe, into a 5.00-mL water sample in a conical test tube. A cloudy solution is formed by dispersion of fine droplets of carbon disulfide in the sample solution. During subsequent centrifugation (5,000 rpm for 2.0 min) the fine droplets of carbon disulfide settle at the bottom of the tube. The effect of several conditions (type and volume of disperser solvent, type of extraction solvent, extraction time, etc.) on the performance of the sample-preparation step was carefully evaluated. Under the optimum conditions the enrichment factors and extraction recoveries were high, and ranged from 122–311 to 24.5–66.7%, respectively. A good linear range (0.2–100 μg L−1, i.e., three orders of magnitude; r 2 = 0.9991–0.9999) and good limits of detection (0.1–0.2 μg L−1) were obtained for most of the analytes. Relative standard deviations (RSD, %) for analysis of 5.0 μg L−1 BTEX compounds in water were in the range 0.9–6.4% (n = 5). Relative recovery from well and wastewater at spiked levels of 5.0 μg L−1 was 89–101% and 76–98%, respectively. Finally, the method was successfully used for preconcentration and analysis of BTEX compounds in different real water samples.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号