首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mixed cationic and anionic surfactants were adsorbed on cadmium sulfide quantum dots (CdS QDs) capped with mercaptoacetic acid. The CdS QDs can be extracted into acetonitrile with 98 % efficiency in a single step. Phase separation only occurs at a molar ratio of 1:1.5 between cationic and anionic surfactants. The surfactant-adsorbed QDs in acetonitrile solution display stronger and more stable photoluminescence than in water solution. The method was applied for determination of silver(I) ion based on its luminescence enhancement of the QDs. Under the optimum conditions, the relative fluorescence intensity is linearly proportional to the concentration of silver(I) ion in the range between 50 pmol L?1and 4 μmol L?1, with a 20 pmol L?1 detection limit. The relative standard deviation was 1.93 % for 9 replicate measurements of a 0.2 μmol L?1 solution of Ag(I).
Figure
?  相似文献   

2.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

3.
Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1.6?nm which resulted in a detection limit of 4.7?nmol?L?1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry.
Figure
Five colors water-soluble CdTe QDs are synthesized with thioglycolic acid as a stabilizer. These QDs can be applied to the ultrasensitive detection of Pb2+ by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and the quenching of luminescence is most effective when the smallest particles are used. The detection limit is 4.7?nmol?L?1 when QDs-I (1.6?nm) are used, which is the lowest in the current related study.  相似文献   

4.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

5.
Water-soluble CuInS2 quantum dots (QDs) stabilized with 3-mercaptopropionic acid were synthesized in aqueous solution and then coated with bovine serum albumin. The resulting particles display fluorescence with a peak at 680 nm that is effectively quenched by 1, 4-dihydro-nicotinamide adenine dinucleotide (NADH), but not by 1, 4-nicotinamide adenine dinucleotide (NAD+). The enzyme lactate dehydrogenase catalyzes the reduction of pyruvate and dehydrogenation of lactic acid using NAD+ or NADH as a cosubstrate. The new QDs were applied to monitor the course of lactate dehydrogenase-catalyzed reaction of pyruvate by detecting NADH via its quenching effect. This resulted in a convenient and selective detection scheme for pyruvate. The detection limit is as low as 25 nM.
Figure
Bovine serum albumin coated CuInS2 quantum dots (QDs) are quenched by 1,4- dihydronicotinamide adenine dinucleotide (NADH) that could react with pyruvic acid and lactate dehydrogenase. Therefore, the CuInS2 QDs could be used to detect pyruvic acid.  相似文献   

6.
A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620?nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10?μg.mL?1, and the limit of detection is 1.0?μg.mL?1.
Figure
Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.  相似文献   

7.
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione (GSH) in physiologically relevant concentrations. CdTe quantum dots (QDs) were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions (hydrogen bonding and electrostatic interaction) and quenches the photoluminescence of the modified QDs by an electron transfer process. GSH, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. There are linear relationships between the concentrations of dopamine and GSH respectively and the intensity of the photoluminescence intensity of the QDs both in the quenched and regenerated form, the ranges being 0.0005 to 0.1 mmol?L?1 for dopamine, and 0.1 to 10 mmol?L?1 for GSH. The method was applied to the determination of dopamine and GSH in human serum samples with satisfactory results.
Figure
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione in physiologically relevant concentrations. QDs were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions and quenches the photoluminescence of the modified QDs by an electron transfer process. Glutathione, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. The method was applied to the determination of dopamine and glutathione in human serum sample with satisfactory results  相似文献   

8.
In the present work, a novel flow-injection chemiluminescence method based on CdTe quantum dots (QDs) was developed for the determination of nitrite. Weak chemiluminescence (CL) signals were observed from a CdTe QDs–H2O2 system under basic conditions. The addition of a trace amount of hemoglobin (Hb) caused the CL from the CdTe QDs–H2O2 system to increase substantially. In the presence of nitrite, the ferrous Hb reacted with the nitrate to form ferric Hb and NO. The NO then bound to ferrous Hb to generate iron nitrosyl Hb. As a result, the CL signal from the CdTe QDs–H2O2–Hb system was quenched. Thus, a flow-injection CL analytical system for the determination of trace nitrite was established. Under optimum conditions, there was a good linear relationship between CL intensity and the concentration of nitrite in the range 1.0?×?10?9 to 8.0?×?10?7 mol L?1 (R 2?=?0.9957). The limit of detection for nitrite using this system was 3.0?×?10?10 mol L?1 (S/N?=?3). This method was successfully applied to detect nitrite in water samples.
Figure
The scheme of the mechanism of the CL system  相似文献   

9.
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200?ng.mL-1, and the detection limit is 0.01?ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Figure
Electrochemiluminescence Immunoassay Based on CdTe Quantun Dots as labels at Nanoporous Gold Leaf electrode  相似文献   

10.
We demonstrate that CdS quantum dots (QDs) can be applied to fluorescence-enhanced detection of nucleic acids in a two-step protocol. In step one, a fluorescently labeled single-stranded DNA probe is adsorbed on the QDs to quench its luminescence. In step two, the hybridization of the probe with its target ssDNA produces a double-stranded DNA which detaches from the QD. This, in turn, leads to the recovery of the fluorescence of the label. The lower detection limit of the assay is as low as 1?nM. The scheme (that was applied to detect a target DNA related to the HIV) is simple and can differentiate between perfectly complementary targets and mismatches.
Figure
CdS quantum dots (CdSQDs) can serve as an effective sensing platform for fluorescence-enhanced DNA detection. This sensing system has a detection limit of 1?nM and is capable of differentiating between complementary and mismatched sequences.  相似文献   

11.
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte (containing cadmium sulfate, EDTA and selenium dioxide) by cycling the potential between 0 and -1.2?V (vs. SCE) for 60?s. The electrodeposited dots were characterized by scanning electron microscopy and energy dispersive spectroscopy. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate. The quenching effect of the immunoreaction on the intensity of the ECL was used to establish a calibration plot which is linear in the range from 0.05 to 200?ng?mL?1. The detection limit is 2?pg?mL?1. The assay is highly sensitive and satisfactorily reproducible. In our opinion it opens new avenues to apply ECL in label-free biological assays.
Figure
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate  相似文献   

12.
Water-soluble cadmium telluride quantum dots (CdTe QDs) capped with glutathione (GSH) display chemiluminescence (CL) emission on reaction with hydrogen peroxide (H2O2) in strongly alkaline medium. It is found that the CL is strongly enhanced on addition of formaldehyde in aqueous solution. A flow injection system was developed, and it is shown that there is good linearity between CL intensity and the concentration of formaldehyde in the 0.06–3.0 μg L?1 range. The limit of detection is as low as 10 ng L?1. The method was successfully applied to the determination of formaldehyde in indoor air after adsorption into an aqueous phase. The recoveries for the real samples range from 97 % to 102.5 %, and the relative standard deviation is <3.8 % for intra- and inter-assay precision.
Figure
Formaldehyde enhances the CL resulting from CdTe quantum dots and H2O2, and this effect is exploited in a simple and sensitive FIA method for the determination of formaldehyde.  相似文献   

13.
We report on a highly sensitive and selective electrochemiluminescence (ECL) based method for the determination of pentachlorophenol (PCP). It is based on a new hybrid material composed of CdS quantum dots (QDs), graphene, and carbon nanotubes (CNTs), and uses peroxodisulfate as the coreactant. The use of this system results in a nearly 18-fold increase in ECL intensity. On interaction between PCP and the QDs, a decrease in ECL intensity is observed at PCP in a concentration as low as 1.0 pM and over a wide linear range (from 1.0 pM to 1.0 nM). The method is hardly affected by other chlorophenols and nitrophenols, and the electrode can be recycled.
Figure
?  相似文献   

14.
We report on a simple strategy for the determination of zinc ion by using surface-modified quantum dots. The probe consists of manganese-doped quantum dots made from zinc sulfide and capped N-acetyl-L-cysteine. The particles exhibit bright yellow-orange emission with a peak at 598?nm which can be attributed to the 4T16A1 transition of Mn(II). This bright fluorescence is effectively quenched by modifying the sulfur anion which suppresses the radiative recombination process. The emission of the probe can then be restored by adding Zn(II) which causes the formation of a ZnS passivation layer around the QDs. The fluorescence enhancement caused is linear in the 1.25 to 30?μM zinc concentration range, and the limit of detection is 0.67?μM.
Figure
A “turn-on” fluorescent probe based on manganese-doped zinc sulfide quantum dot capped with N-acetyl-L-cysteine (NAC) was obtained and using it to determine the concentration of zinc (II) according to the fluorescent enhancement in aqueous solution.  相似文献   

15.
We have synthesized water-dispersible CdTe quantum dots (QDs) capped with thioglycolic acid. Their quantum yield is higher than 54%. A sensitive electrochemiluminescence (ECL) method was established based on the modification of the composite of the QDs, carbon nanotubes and chitosan on indium tin oxide glass. The sensor displays efficient and stable anodic ECL which is quenched by dopamine. A respective sensor was designed that responds to dopamine linearly in the range of 50?pM to 10?nM, and the detection limit is 24?pM. Dopamine was determined with this sensor in spiked cerebro-spinal fluid with average recoveries of 95.7%.
Figure
The CdTe quantum dots have been synthesized and therefore developed an electrochemiluminescent sensor based on immobilizing its composite with carbon nanotubes and chitosan on indium tin oxide glass. The sensor responded toward dopamine linearly in the range of 50?pM to 10?nM with a detection limit of 24?pM.  相似文献   

16.
We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immunoreaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL?1. The limit of detection is 2?×?10?11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps.
Figure
A nanobiosensor has been fabricated based on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET). In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed.  相似文献   

17.
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quantum dots‐based competitive fluoroimmunoassay with magnetic core/shell Fe3O4/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen‐QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs‐labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen‐QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen‐QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL?1 and a low detection limit of 0.5 pg·mL?1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results.  相似文献   

18.
We have studied the CdTe quantum dot-induced phototransformation of 2,4-dichlorophenol (2,4-DCP) and its subsequent chemiluminescence (CL) reaction. Quantum dots (QDs) of different size and capped with thioglycolic acid were prepared and characterized by molecular spectroscopy, X-ray diffraction and transmission electron microscopy. In the presence of QDs, 2,4-DCP is photochemically transformed into a long-living light emitting precursor which can react with N-bromosuccinimide to produce CL with peak wavelengths at 475 and 550 nm. The formation of singlet oxygen during the phototransformation process was confirmed by the enhancement effect of deuterium oxide on the CL reaction and the change in the UV spectrum of a chemical trap. The CL intensity is linearly related to the concentration of 2,4-DCP in the range from 0.36 to 36 μmol L?1, and the detection limit (at 3σ) is 0.13 μmol L?1.
Figure
CdTe QDs as an alternative photosensitizer that can be applied to the phototransformation/CL detection of 2, 4-DCP.  相似文献   

19.
A multiplexed assay strategy was developed for the detection of nucleic acid hybridization. It is based on fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and multi-sized quantum dots (QDs) deposited on the surface of silica photonic crystal beads (SPCBs). The SPCBs were first coated with a three-layer primer film formed by the alternating adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrensulfonate). Probe DNA sequences were then covalently attached to the carboxy groups at the surface of the QD-coated SPCBs. On addition of DNA-AuNPs and hybridization, the fluorescence of the donor QDs is quenched because of the close proximity of the AuNPs. However, the addition of target DNA causes a recovery of the fluorescence of the QD-coated SPCBs, thus enabling the quantitative assay of hybridized DNA. Compared to fluorescent dyes acting as acceptors, the use of AuNPs results in much higher quenching efficiency. The multiplexed assay displays a wide linear range, high sensitivity, and very little cross-reactivity. This work, where such SPCBs are used for the first time in a FRET assay, is deemed to present a new and viable approach towards high-throughput multiplexed gene assays.
Figure
A novel fluorescence energy transfer system was constructed for the multiplexed hybridization assay using gold nanoparticles and quantum dot conjugates on silica photonic crystal beads  相似文献   

20.
We report on a novel immunoassay for porcine pseudorabies virus (PRV) antibody that is based on fluorescence signal amplification induced by silver(I) ion exchange in CdSe nanocrystals. An antigen-antibody-secondary antibody sandwich structure was first formed from PRV, PRV antibody, and CdSe-labeled rabbit anti-pig antibody. Then, the Cd(II) ions in the CdSe labels were released by a cation exchange reaction with Ag(I). Released Cd(II) was finally quantified using the sensitive fluorescent probe Rhodamine 5 N. Due to this signal amplification, the sensitivity and linear range of the immunoassay were largely improved (compared to the traditional ELISA) in having a limit of detection as low as 1.2 ng?mL?1 of PRV antibody and a linear range from 2.44 to 312 ng?mL?1. The successful determination of PRV antibody in pig serum samples is proof for the utility of the method.
Figure
A simple, rapid and sensitive method for the detection of PRV antibody through the fluorescence signal amplification caused by cation-exchange in CdSe NCs was reported. The CdSe NCs labeled rabbit anti-pig IgG was used to capture the PRV antibody. After the immunoreaction, the Cd2+ in the CdSe labels was completely replaced by the cation-exchange reaction with Ag+. Then Cd2+sensitive fluorescence indicator Rhod-5 N was added to bind with Cd2+ and caused the fluorescence signal enhance substantially. Thus a novel method for rapid and sensitive detection of porcine pseudorabies based on the fluorescence signal amplification was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号