首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

2.
We consider the following fourth order mean field equation with Navier boundary condition $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\,\,{\rm in}\, \Omega,{\quad}u = \Delta u = 0\,\,{\rm on}\,\partial \Omega,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(*)$$ where h is a C 2,?? positive function, ?? is a bounded and smooth domain in ${\mathbb{R}^4}$ . We prove that for ${\rho \in (32m\sigma_3, 32(m + 1)\sigma_3)}$ the degree-counting formula for (*) is given by $$d(\rho)=\left\{\begin{array}{ll}\frac{1}{m!} (-\chi (\Omega) +1) \cdot\cdot \cdot (-\chi(\Omega)+m) & {\rm for}\, m >0 ,\\ 1 & {\rm for}\, m=0\end{array}\right.$$ where ??(??) is the Euler characteristic of ??. Similar result is also proved for the corresponding Dirichlet problem $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\quad{\rm in}\,\Omega, \quad u = \nabla u = 0 \quad {\rm on}\,\,\partial \Omega.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(**)$$   相似文献   

3.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

4.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

5.
Let ?? be a real number satisfying 0?<????<?n, ${0\leq t<\alpha, \alpha{^\ast}(t)=\frac{2(n-t)}{n-\alpha}}$ . We consider the integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{u^{{\alpha{^\ast}(t)}-1}(y)}{|y|^t|x-y|^{n-\alpha}}\,dy,\quad\quad\quad\quad\quad\quad\quad(1)$$ which is closely related to the Hardy?CSobolev inequality. In this paper, we prove that every positive solution u(x) is radially symmetric and strictly decreasing about the origin by the method of moving plane in integral forms. Moreover, we obtain the regularity of solutions to the following integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{|u(y)|^{p}u(y)}{|y|^t|x-y|^{n-\alpha}}\, dy\quad\quad\quad\quad\quad\quad\quad(2)$$ that corresponds to a large class of PDEs by regularity lifting method.  相似文献   

6.
In this paper, firstly, we investigate a class of singular eigenvalue problems with the perturbed Hardy–Sobolev operator, and obtain some properties of the eigenvalues and the eigenfunctions. (i.e. existence, simplicity, isolation and comparison results). Secondly, applying these properties of eigenvalue problem, and the linking theorem for two symmetric cones in Banach space, we discuss the following singular elliptic problem $$\left\{\begin{array}{ll}-\Delta_{p}u-a(x)\frac{|u|^{p-2}u}{|x|^{p}}= \lambda \eta(x)|u|^{p-2}u+ f(x,u) \quad x \in \Omega, \\ u =0 \quad\quad\quad\quad\quad\quad\quad x\in\partial \Omega, \end{array} \right.$$ where ${a(x)=(\frac{n-p}{p})^{p}q(x),}$ if 1 < p < n, ${a(x)=(\frac{n-1}{n})^{n} \frac{q(x)}{({\rm log}\frac{R}{|x|})^{n}},}$ if p = n, and prove the existence of a nontrivial weak solution for any ${\lambda \in \mathbb{R}.}$   相似文献   

7.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

8.
Let Σ be an immersed symplectic surface in CP 2 with constant holomorphic sectional curvature k > 0. Suppose Σ evolves along the mean curvature flow in CP 2. In this paper, we show that the symplectic mean curvature flow exists for long time and converges to a holomorphic curve if the initial surface satisfies ${|A|^2 \leq \lambda|H|^2 + \frac{2\lambda-1}{\lambda}k}$ and ${\cos\alpha\geq\sqrt{\frac{7\lambda-3}{3\lambda}}\left(\frac{1}{2} < \lambda\leq\frac{2}{3}\right) {\rm or} |A|^2\leq \frac{2}{3}|H|^2+\frac{4}{5}k\cos\alpha\, {\rm and} \cos\alpha\geq 1-\varepsilon}$ , for some ${\varepsilon}$ .  相似文献   

9.
In this article, we prove that the following weighted Hardy inequality $$\begin{array}{ll}\big(\frac{|{d-p}|}{p}\big)^{p}\, \int\limits_{\Omega}\, \frac{|{u}|^{p}}{|{x}|^{p}}\;d\mu \\ \quad \quad \le \int\limits_{\Omega}\,|{\nabla u}|^{p}\;d\mu+ \big(\frac{|{d-p}|}{p}\big)^{p-1}\,\textrm{sgn}(d-p)\,\int\limits_{\Omega}|{u}|^{p}\,\frac{(x^{t}Ax)^{p/2}}{|{x}|^{p}}\; d\mu \quad \quad \quad (1) \end{array}$$ holds with optimal Hardy constant ${\big(\frac{|d-p|}{p}\big)^{p}}$ for all ${u \in W^{1,p}_{\mu,0}(\Omega)}$ if the dimension d ≥ 2, 1 < p < d, and for all ${u \in W^{1,p}_{\mu,0}(\Omega{\setminus}\{0\})}$ if p > d ≥ 1. Here we assume that Ω is an open subset of ${\mathbb{R}^{d}}$ with ${0 \in \Omega}$ , A is a real d × d-symmetric positive definite matrix, c > 0, and $$ d \mu: = \rho(x) \,dx \qquad \textrm{with} \quad \rho(x) = c \cdot \exp(-\frac{1}{p}(x^{t}Ax)^{p/2}), \quad x \in\Omega.\quad \quad (2) $$ If p > d ≥ 1, then we can deduce from (1) a weighted Poincaré inequality on ${W^{1,p}_{\mu,0}(\Omega \setminus\{0\})}$ . Due to the optimality of the Hardy constant in (1), we can establish the nonexistence (locally in time) of positive weak solutions of a p-Kolmogorov parabolic equation perturbed by a singular potential in dimension d = 1, for 1 < p <  + ∞, and when Ω =  ]0, + ∞[.  相似文献   

10.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

11.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

12.
We establish a global Calderón–Zygmund theory for solutions to a large class of nonlinear parabolic systems whose model is the inhomogeneous parabolic \(p\) -Laplacian system $$\begin{aligned} \left\{ \begin{array}{ll} \partial _t u - {{\mathrm{div}}}(|Du|^{p-2}Du) = {{\mathrm{div}}}(|F|^{p-2}F) &{}\quad \hbox {in }\quad \Omega _T:=\Omega \times (0,T)\\ u=g &{}\quad \hbox {on }\quad \partial \Omega \times (0,T)\cup {\overline{\Omega }}\times \{0\} \end{array} \right. \end{aligned}$$ with given functions \(F\) and \(g\) . Our main result states that the spatial gradient of the solution is as integrable as the data \(F\) and \(g\) up to the lateral boundary of \(\Omega _T\) , i.e. $$\begin{aligned} F,Dg\in L^q(\Omega _T),\ \partial _t g\in L^{\frac{q(n+2)}{p(n+2)-n}}(\Omega _T) \quad \Rightarrow \quad Du\in L^q(\Omega \times (\delta ,T)) \end{aligned}$$ for any \(q>p\) and \(\delta \in (0,T)\) , together with quantitative estimates. This result is proved in a much more general setting, i.e. for asymptotically regular parabolic systems.  相似文献   

13.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

14.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

15.
We study that the n-graph defined by a smooth map ${f:\Omega\subset\mathbb R^{n}\to \mathbb R^{m}, m\ge 2,}$ in ${\mathbb R^{m+n}}$ of the prescribed mean curvature and the Gauss image. Under the condition $$\Delta_f=\left[\text{det}\left(\delta_{ij}+\sum_\alpha{\frac {\partial {f^\alpha}}{\partial {x^i}}}{\frac {\partial {f^\alpha}}{\partial {x^j}}}\right)\right]^{\frac{1}{2}} < 2,$$ we derive the interior curvature estimates $$\sup_{D_R(x)}|B|^2\le{\frac{C}{R^2}}$$ when 2 ≤ n ≤ 5 with constant C depending on the given geometric data. If there is no dimension limitation we obtain $$\sup_{D_R(x)}|B|^2\le CR^{-a}\sup_{D_{2R}(x)}(2-\Delta_f)^{-\left({\frac{3}{2}}+{\frac{1}{s}}\right)},\quad s=\min(m, n)$$ with a < 1. If the image under the Gauss map is contained in a geodesic ball of the radius ${{\frac{\sqrt{2}}{4}}\pi}$ in G n,m we also derive corresponding estimates.  相似文献   

16.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

17.
18.
We consider the following problem $$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$ where ${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$ and Ω is a bounded domain in R N . We prove that if ${N \ge 7, a(0) > 0}$ and all the principle curvatures of at 0 are negative, then the above problem has infinitely many solutions.  相似文献   

19.
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.  相似文献   

20.
We present various inequalities for the harmonic numbers defined by ${H_n=1+1/2 +\ldots +1/n\,(n\in{\bf N})}$ . One of our results states that we have for all integers n ???2: $$\alpha \, \frac{\log(\log{n}+\gamma)}{n^2} \leq H_n^{1/n} -H_{n+1}^{1/(n+1)} < \beta \, \frac{\log(\log{n}+\gamma)}{n^2}$$ with the best possible constant factors $$\alpha= \frac{6 \sqrt{6}-2 \sqrt[3]{396}}{3 \log(\log{2}+\gamma)}=0.0140\ldots \quad\mbox{and} \quad\beta=1.$$ Here, ?? denotes Euler??s constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号