共查询到20条相似文献,搜索用时 15 毫秒
1.
Sameenoi Y Koehler K Shapiro J Boonsong K Sun Y Collett J Volckens J Henry CS 《Journal of the American Chemical Society》2012,134(25):10562-10568
Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min. 相似文献
2.
Microfluidic device architecture for electrochemical patterning and detection of multiple DNA sequences 总被引:1,自引:0,他引:1
Pavlovic E Lai RY Wu TT Ferguson BS Sun R Plaxco KW Soh HT 《Langmuir : the ACS journal of surfaces and colloids》2008,24(3):1102-1107
Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold-thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza. 相似文献
3.
A bead-based microfluidic device was developed and demonstrated to achieve rapid and sensitive enzyme-linked immunosorbent assay (ELISA) with quantum dots as the labeling fluorophore for virus detection. In comparison to standard ELISA performed on the same virus, the minimal detectable concentration of the target virus was improved from 360 to 22 ng mL-1, the detection time was shortened from >3.25 h to <30 min, and the amount of antibody consumed was reduced by a factor of 14.3. 相似文献
4.
5.
6.
Acetylene black nanoparticles were homogeneously dispersed into water in the presence of hydrophobic surfactant and then used to modify the surface of a glassy carbon electrode. An examination of the electrochemistry of rutin showed that this modification of the electrodes resulted in a considerable enhancement of the surface, thus remarkably increasing the signal for rutin. As a result, a sensitive and convenient electrochemical method was developed for the determination of rutin. The linear range is from 20 μg L-1 to 5 mg L-1, and the limit of detection is 10 μg L-1. The method was successfully employed to the determination of rutin in traditional Chinese medicines. 相似文献
7.
A new simple, selective and rapid cyclic voltammetric method is reported for the accurate and precise determination of captopril using chlorpromazine as a suitable electrocatalyst. It has been shown by cyclic voltammetry, single step chronoamperometry and electrochemical impedance spectroscopy that chlorpromazine can catalyze the oxidation of captopril in aqueous buffer solution and produces a sharp oxidation peak current at about 0.625 V vs. saturated calomel reference electrode. The catalytic oxidation peak current of captopril is linearly dependent on its concentration and enables the determination of captopril over the concentration range of 8–1000 μM at pH 5.0, with a detection limit of 4.8 μM. The relative standard deviation for the determination of 400 μM captopril is 0.66% (n = 9). The influence of potential interfering substances on the determination of captopril was studied. The method was satisfactorily applied to the determination of captopril in real samples such as drug and urine. 相似文献
8.
Iwahara J Anderson DE Murphy EC Clore GM 《Journal of the American Chemical Society》2003,125(22):6634-6635
EDTA-derivatized deoxythymidine (dT-EDTA), incorporated into DNA and complexed to Fe2+ in the presence of dithiothreitol, is a widely used reagent for sequence-specific cleavage of duplex DNA. Using HPLC/electrospray mass spectrometry, we show that cleavage is specific to Fe2+, and no cleavage occurs when DNA-EDTA is complexed to other metal ions such as Ca2+, Mn2+, and Fe3+ even after many days. Because dT-EDTA can be incorporated at any desired position of a synthetic oligonucleotide, DNA-EDTA is ideally suited for the measurement of intermolecular paramagnetic relaxation enhancement effects between a paramagnetic ion chelated to DNA-EDTA and a bound protein. Measurements on the SRY/DNA-EDTA complex using two double-stranded oligonucleotides bearing dT-EDTA at opposite ends of the sequence indicate that intermolecular 1HN-T2 enhancement by chelated Mn2+ can be used to readily ascertain the polarity of protein binding to DNA and to derive quantitative long-range distance information for structure refinement. In the case of the SRY-DNA complex, excellent agreement between observed and calculated 1HN-T2 paramagnetic relaxation enhancement data can be achieved with insignificant shifts in the atomic coordinates ( approximately 0.25 A for all heavy atoms) while simultaneously satisfying all other experimental restraints. A unique feature of DNA-EDTA is that the relaxation enhancement effect can be tuned by judicious choice of the paramagnetic metal ion, thereby permitting a wide range of long-range intermolecular electron-proton distances, ranging from approximately 9 to 35 A, to be probed. 相似文献
9.
An electrochemical sensor based on the electrocatalytic activity of graphene (Gr) for sensitive detection of caffeine is presented. The electrochemical behaviors of caffeine on Nafion-Gr modified glassy carbon electrode (Nafion-Gr/GCE) were investigated by cyclic voltammetry and differential pulse voltammetry. The results showed that the Nafion-Gr/GCE exhibited excellent electrocatalytic activity to caffeine. Caffeine can be effectively accumulated at Nafion-Gr/GCE and produce a sensitive anodic peak. Such electrocatalytic behavior of Gr is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics and strong adsorptive capability. This electrochemical sensor shows an excellent performance for detecting caffeine with a detection limit of 1.2×10(-7) M (S/N=3), a reproducibility of 5.2% relative standard deviation, and a satisfied recovery from 98.6% to 102.0%. The sensor shows great promise for simple and sensitive determination of caffeine. 相似文献
10.
Mohammad Mazloum-Ardakani Zahra Dehghani Alireza Khoshroo 《Journal of the Iranian Chemical Society》2018,15(5):1061-1068
In this paper, the use of molecular self-assembled monolayers of 5-(1,3-dithiolan-2-eyl)-3-methyl banzen-1,2-diol (DMD) on gold nanoparticles was described (DMD-AuNPs). The redox properties of modified electrode at various scan rates were investigated by cyclic voltammetry. A pair of well-defined quasi-reversible redox peaks of DMD were obtained at the modified electrode. Dramatically enhanced electrocatalytic activity was exemplified at the DMD-AuNPs, as an electrochemical sensor to investigate the electro-oxidation of isoprenaline (IP). With this modified electrode, the oxidation potential of the IP was shifted about 235 mV toward a less positive potential value than that of an unmodified electrode. The values of electron transfer coefficients (α = 0.5), catalytic rate constant (ks = 9.2 s?1) and diffusion coefficient (D = 8.9 × 10?5 cm2 s?1) were calculated for IP. The response of catalytic current with IP concentration showed a linear relation in the range from 0.5 to 800 µM with a detection limit of 0.21 µM. Finally, this modified electrode was used for the determination of IP in IP injections. 相似文献
11.
A carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one (2,7-BF) and carbon nanotubes (CNTs) was used for the sensitive and selective voltammetric determination of N-acetylcysteine (NAC). The mediated oxidation of NAC at the modified electrode was investigated by cyclic voltammetry (CV). Also, the values of catalytic rate constant (k), and diffusion coefficient (D) for NAC were calculated. Differential pulse voltammetry (DPV) of NAC at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 52.0 nmol L−1. DPV was used for simultaneous determination of NAC and acetaminophen (AC) at the modified electrode, and quantitation of NAC and AC in some real samples by the standard addition method. 相似文献
12.
Solná R Sapelnikova S Skládal P Winther-Nielsen M Carlsson C Emnéus J Ruzgas T 《Talanta》2005,65(2):349-357
The screen-printed four-electrode system was used as the amperometric transducer for determination of phenols and pesticides using immobilised tyrosinase, peroxidase, acetylcholinesterase and butyrylcholinesterase. Acetylthiocholine chloride was chosen as substrate for cholinesterases to measure inhibition by pesticides, hydrogen peroxide served as co-substrate for peroxidase to measure phenols. The compatibility of hydrolases and oxidoreductases working in the same array was studied. The detection of p-cresol, catechol and phenol as well as of pesticides including carbaryl, heptenophos and fenitrothion was carried out in flow-through and steady state arrangements. In addition, the effects of heavy metals (Cu2+, Cd2+, Fe3+), fluoride (NaF), benzene and dimethylsulphoxide on cholinesterase activities were evaluated. It was demonstrated that electrodes modified with hydrolases and oxidoreductases can function in the same array.The achieved R.S.D. values obtained for the flow system were below 4% for the same sensor and less than 10% within a group of five sensors. For the steady state system, R.S.D.s were approximately twice higher. One assay was completed in less than 6 min. The limit of detection for catechol using tyrosinase was equal to 0.35 and 1.7 μM in the flow and steady state systems, respectively. On the contrary, lower limits of detection for pesticides were achieved in the steady state system—carbaryl 26 nM, heptenophos 14 nM and fenitrothion 0.58 μM. 相似文献
13.
The use of grape tissue as a source of catalase for the determination of hydrogen peroxide is reported. A slice of grape tissue attached to the membrane of a Clark-type oxgen sensor was used to monitor the oxidation of hydrogen peroxide by catalase. At the steady state, the sensor responds linearly to hydrogen peroxide in the concentration range 1 × 10?5–5 × 10?4 M. The response time (T90) was of the order of 1 min for this sensor. No interference was observed from ethanol, amino acids, glucose and lactic acid. The long-term stability of the grape tissue sensor was much better than previously reported immobilized enzyme and liver tissue-based hydrogen peroxide sensors. 相似文献
14.
Andrzej Szczurek 《International journal of environmental analytical chemistry》2015,95(10):936-949
This work examined the acquisition of information about gases using a virtual sensor array and classification. We were particularly interested in the approach in which classes are defined in a qualitative–quantitative manner, that is, by identifying the gas and concentration range. This type of information will be of interest for air pollution assessment purposes. In this field of application, it is often not necessary to provide very precise information. The idea of the virtual sensor array exploits the dependence of a gas sensor’s response on operating conditions. Originally it was developed as a means to improve the selectivity of an electronic nose when energy consumption by this device was a serious limitation. If the response of one sensor is measured in n time points, and each time point is characterised by different controlled exposure conditions, the sensor becomes analogous to an n-dimensional virtual sensor array. Compared with conventional approaches, a virtual sensor array based on a single sensor offers low power consumption, low volume, and low cost, which opens up new markets for wide application of portable and handheld devices. In this article, we show that a virtual sensor array and classification may serve as a reliable source of qualitative–quantitative information about gases. Twenty-six classes (five substances, each at five concentration ranges, and pure air) were recognised with a true positive rate higher than 99.14 ± 0.49% and a true negative rate higher than 99.21 ± 0.52%. As demonstrated, the basis for recognition could be a virtual sensor array associated with a low-power consuming sensor (210–280 mW). The complexity of the applied classifier could be adjusted depending on the choice of sensor operating conditions. For a complex classifier like support vector machine, dynamic exposure was sufficient to obtain high classification performance. A simpler classifier like k-nearest neighbours required more information, that is, information associated with static as well as dynamic exposure. 相似文献
15.
16.
Capillary electrophoresis coupled with electrochemical detection (CE-EC) for determination of antioxidants, propyl gallate (PG) and tert-butylhydroquinone (TBHQ), in cosmetic samples was proposed in this work. A porous etched joint was used to isolate the electrochemical detection from the electrophoretic high voltage. Compared with the 25 microm i.d. capillary without a decoupler in a CE-EC system, a 75 microm i.d. capillary applied in the present system gave an improvement in both sample injection and sensitivity. Moreover, the carbon fiber working electrode could be directly in touch with the end of separation capillary due to the elimination of the effect of separation voltage on the EC detection, so the alignment of working electrode and capillary became easy and the dead volume was also decreased. Baseline separation of the two antioxidants was achieved by CE in a 50 cm long x 75 microm i.d. capillary at 20 kV using 5.0 mmol L(-1) phosphate buffer (pH 8.00). 0.7 V (versus Ag/AgCl) was applied to the carbon fiber electrode for electrochemical detection. Under the optimal condition, the precisions (RSD, n=4) of peak height and migration time of PG and TBHQ were 2.39-3.59% and 0.34-0.44%, respectively. The detection limits of PG and TBHQ were 2.51x10(-6) and 4.88 x 10(-6) mol L(-1) for standard solution and 0.0751 and 0.0328 mg g(-1) for the real cosmetic samples with consumption of 0.3g sample. Analysis of TBHQ and PG in cosmetics samples was also achieved with the present system and the spiked recoveries of two analytes in cosmetics samples were in the range of 93.6-98.8%. 相似文献
17.
18.
An electrochemical sensor was developed for the detection of organophosphate pesticides based on electrodeposition of gold nanoparticles on a multi-walled carbon nanotubes modified glassy carbon electrode. Cyclic voltammetry was employed in the process of electrodeposition. Field emission scanning electron microscope and X-ray diffraction techniques were used for characterization of the composite. Organophosphate pesticides (e.g. parathion) were determined using linear scan voltammetry. A highly linear response to parathion in the concentration range from 6.0?×?10?5 to 5.0?×?10?7 M was observed, with a detection limit of 1.0?×?10?7 M estimated at a signal-to-noise ratio of 3. The method has been applied to the analysis of parathion in real samples. 相似文献
19.
Graphene was prepared by electrochemical reduction of exfoliated graphite oxide at cathodic potentials, and used to fabricate a graphene-modified glassy carbon electrode (GCE) which was applied in a sensor for highly sensitive and selective voltammetric determination of hydroquinone (HQ). Compared to a bare (conventional) GCE, the redox peak current for HQ in pH 5.7 acetate buffer solution is significantly increased, indicating that graphene possesses electrocatalytic activity towards HQ. In addition, the peak-to-peak separation is significantly improved. The modified electrode enables sensing of HQ without interference by catechol or resorcinol. Under optimal conditions, the sensor exhibits excellent performance for detecting HQ with a detection limit of 0.8?μM, a reproducibility of 2.5% (expressed as the RSD), and a recoveries from 98.4 to 101.2%. Figure
Graphene based glassy carbon electrode was used to determine hydroquinone in the simultaneous presence of it isomers of catechol (CC) and resorcinol (RC). The desired sensitivity and selectivity is attributed to the good conductivity and excellent electrocatalytic ability of graphene. 相似文献
20.
Vidal JC Bonel L Ezquerra A Duato P Castillo JR 《Analytical and bioanalytical chemistry》2012,403(6):1585-1593
We report a direct competitive immunosensor for the rapid determination of ochratoxin A (OTA) in wine samples. Magnetic beads (1 ± 0.5 μm diameter) covered with streptavidin were functionalized with a monoclonal antibody against OTA, and then left to incubate in a solution of tracer (ochratoxin conjugated to the enzyme peroxidase) and a range of OTA concentrations (10(-4) to 1,000 ng mL(-1)). After washing and separation steps helped with a magnetic field, a volume of the dispersion was put on screen-printed electrodes under a magnet, and after adding the substrate the p-benzoquinone generated enzymatically was detected by differential-pulse voltammetry. Wine samples (2 mL) were easily prepared simply by adjusting to pH = 7.5 with diluted NaOH and by adding polyvinylpyrrolidone for complexing polyphenols, without any other clean-up or preconcentration steps. The limit of detection for detecting OTA in wines was of 0.11 ± 0.01 ng L(-1), well below the permitted content of the mycotoxin by the European Union (<2 ng mL(-1)). Spiked wines were subjected to immunosensor calibrations to study the matrix effects. OTA concentrations measured with the immunosensor were compared with those obtained by high-performance liquid chromatography coupled to fluorescence detection (AOAC official method 2001.01). The OTA levels from two red wines of "Campo de Borja", Spain, ranged from about 0.027 to 0.033 ng mL(-1) of OTA. 相似文献