首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

2.
A simple, rapid, and reproducible isocratic reversed-phase LC method has been established for simultaneous analysis of mirodenafil and its two main metabolites, SK3541 and SK3544, in rat plasma, urine, and tissue homogenates. Samples were deproteinized with acetonitrile containing sildenafil (internal standard). The compounds were separated on a C18 column with 52:48 (v/v) 0.02 m ammonium acetate buffer (pH 6)—acetonitrile as mobile phase at a flow rate of 1.4 mL min?1. UV detection was at 254 nm and detection limits of mirodenafil, SK3541, and SK3544 in plasma were 0.03, 0.05, and 0.1 μg mL?1, respectively. The method is applicable to pharmacokinetic studies of mirodenafil and its metabolites in rats.  相似文献   

3.
A simple LC method has been developed and validated to determine trans-3,5,3′,4′,5′-pentamethoxystilbene (PMS) in rat plasma. Chromatographic separation was achieved through gradient delivery of acetonitrile and water (1.5 mL min?1) at 50 °C. PMS was quantified using UV detection at 320 nm. The standard curve ranged from 15 to 1,500 ng mL?1. The intra- and inter-day precisions, in terms of CV, were all less than 10% while the inter-day and intra-day bias ranged from ?6.8 to 8.3%. The plasma PMS levels were monitored in Sprague-Dawley rats after drug administration. This simple LC method appears to be useful in the pharmacokinetic investigation of PMS.  相似文献   

4.
A rapid high-performance liquid chromatography UV method and a simple sample preparation for analyzing iohexol in canine plasma, for evaluating glomerular filtration rate (GFR) and intestinal permeability, were developed and validated. Trifluoroacetic acid (TFA) was used for protein precipitation and iohexol extraction from plasma, followed by vortex mixing and centrifugation. As an internal standard, 4-aminobenzoic acid (para-aminobenzoic acid, PABA) was added. The supernatant (5 μL) was injected into a Zorbax SB-C18 LC column maintained at 50 °C. The mobile phase of the LC method was a water–methanol gradient at pH 3.0 adjusted with TFA. Fast LC measurement was achieved by using a rapid-resolution LC technique. Total run time was 13 min, and UV wavelength was set at 246 nm. Precision of the method was 0.2–9.0%, depending on the iohexol concentration in plasma. Recovery of iohexol from plasma was over 90%, and recovery of the internal standard 99.1 ± 1.4%. The calibration curve was linear (r = 0.9997) over iohexol concentrations of 2.5–150 μg mL?1 (n = 5). This method is fast, simple, reliable and applicable in clinical settings.  相似文献   

5.
The purpose of this study was to develop a simple and accurate analytical method for determination of norepinephrine, epinephrine, and dopamine in urine. The method involves liquid–liquid extraction then liquid chromatography–mass spectrometry (LC–MS). Alkyl chloroformate derivatives were prepared, as the N(O,S)-alkoxycarbonyl alkyl esters of the analytes, in the aqueous samples. The optimum derivatizing reagent for preparation of the N(O,S)-alkoxycarbonyl alkyl esters was chosen by comparing the efficiency of LC of the derivatized analytes after liquid–liquid extraction. The optimum conditions for liquid–liquid extraction from the aqueous matrix were pH 3.0, no salt, and diethyl ether as extraction solvent. Limits of detection (LOD) were 0.5 ng mL?1 for dopamine and epinephrine and 0.1 ng mL?1 for norepinephrine. Limits of quantification (LOQ) for urine samples were 1.0 ng mL?1 for all three compounds. The precision of intra- and inter-day assays was 1.65–581 and 7.17–9.73% (relative standard deviation, RSD), respectively. The range of inaccuracy for intra- and inter-day assays was ?6.47 to 11.9% and ?7.5 to 7.76% (bias) at concentrations of 5 and 50 ng mL?1, respectively.  相似文献   

6.
Kim  Bora  Shin  Hyun-Suk  Kim  Jung-Ryul  Lim  Kyung-Soo  Yoon  Seo Hyun  Yu  Kyung-Sang  Shin  Sang-Goo  Jang  In-Jin  Cho  Joo-Youn 《Chromatographia》2012,75(11):671-677

A simple, rapid and sensitive LC–MS/MS method in positive ion mode was developed and validated to determine CKD-501, lobeglitazone, in human plasma and urine using glipizide as an internal standard (IS). Lobeglitazone is a novel thiazolidinedione (TZDs)-based peroxisome proliferator-activated receptor (PPAR) agonist, used for the management of type-2 diabetes. After mixing the IS, dissolved in acetonitrile, with a plasma or urine sample containing lobeglitazone, 10 μL of supernatant was injected into the LC–MS/MS system. Quantification was performed in the multiple reaction monitoring (MRM) mode using transition of 481.5 → 152.2 (m/z) for lobeglitazone and 446.1 → 321.2 (m/z) for the IS. The method showed good linearity over concentration ranges of 0.5–1,000 ng mL−1 for plasma and 0.2–250 ng mL−1 for urine (r 2 ≥ 0.9996). The mean percent extraction recovery of lobeglitazone was 90.8 % for plasma and 87.3 % for urine, while the recoveries of the IS were greater than 86.4 % for both. The intra-day and inter-day precision of plasma ranged from 1.1 to 3.7 and 2.5 to 3.3 % (RSD), respectively, and the intra- and inter-day precision of urine ranged from 1.5 to 2.7 and 3.2 to 3.5 %, respectively. This method is simple, sensitive, and applicable for the pharmacokinetic study of lobeglitazone in human plasma. Most of the urine concentrations of lobeglitazone were below the LLOQ because the lobeglitazone is extensively metabolized.

  相似文献   

7.
A rapid, selective and sensitive reversed-phase liquid chromatographic (LC) method was developed for the determination of piribedil in human serum, urine and pharmaceutical dosage form. LC analysis was carried out using reversed-phase isocratic elution with a C18 column and a mobile phase of 0.01 M phosphate buffer-acetonitrile (50:50, v/v). The chromatograms showed good resolution and sensitivity with no interference of human serum and urine. Piribedil concentrations were determined using diode array detection at 240 nm. Sildenafil citrate was used as internal standard. The limit of quantification (LOQ) and limit of detection (LOD) concentrations were 107.2 and 321.6 pg mL?1, 96.6 and 290.4 pg mL?1, 161.7 and 53.9 pg mL?1 for urine, serum and pharmaceutical dosage forms, respectively. The method was validated for its linearity, precision and accuracy and applied to the tablets, urine and human serum. In addition, the results were compared to those obtained from UV-spectrophotometry.  相似文献   

8.
9.
A simple liquid chromatographic method for the determination of gemifloxacin (CAS number 175463-14-6) in human plasma has been developed. An aliquot quantity of 1 mL plasma sample was taken and 0.1 mL internal standard was added and mixed. 1 mL methanol was added to it. The mixture was then sonicated for 10 min followed by 20 min centrifugation at 5000 rpm (g = 3600). The supernatant layer was separated and filtered through simple filtration unit (membrane filter, 0.45 μm) and injected into the LC system consisting of Hypersil BDS, C18 (250 × 4.6 mm, 5 μm particle size) column, using 1% formic acid : methanol = 65:35 (v/v) as mobile phase with ultra violet detection at 328 nm. Lower limit of detection was 20 ng mL?1 and lower limit of quantitation was 50 ng mL?1. Maximum between-run precision was 14.614%. Mean extraction recovery was found to be 87.32 to 89.32%. Stability study showed that after three freeze-thaw cycles the loss of three quality control samples were less than 10%. Samples were stable at room temperature for 12 h and at ?20 °C for 3 months. Before injecting into LC system, the processed samples were stable for at least 8 h. The method was used to perform bioequivalence study in human volunteers.  相似文献   

10.
A reversed-phase LC method has been developed for quantitative analysis of lutein in rat plasma and applied to a study of the pharmacokinetics of lutein in rats. From a variety of compounds and solvents tested, astaxanthin was selected as the internal standard. n-Hexane was found to be the best solvent for extracting lutein from plasma. LC analysis of the extracts was performed on a C18 column equipped with a guard pre-column. Linearity was good (r > 0.99) over the range 10–100 ng mL?1. Recovery from plasma was 82.7–92.9% the intra-day and inter-day precision were always better than 3%. The limits of detection (LOD) and quantification (LOQ) were 2.5 and 8.3 ng mL?1, respectively. The LC method was used to quantify lutein and zeaxanthin in rat plasma in a 36-h pharmacokinetic study in which experimental rats received a single oral dose of lutein (20 mg kg?1). The results are presented.  相似文献   

11.
A sensitive, precise and simple LC method for the simultaneous quantification of aliskiren, valsartan and sitagliptin in rat plasma has been developed and validated. The chromatographic separation was achieved on a C18 column (250 mm × 4.6 mm, 5 μm) maintained at room temperature, using isocratic elution with acetonitrile/20 mM ammonium acetate buffer (35:65, v/v), pH adjusted to 4.85 with glacial acetic acid, and detected using a fluorescence detector. Liquid–liquid extraction of the aliskiren, valsartan and sitagliptin from the rat plasma with t-butyl methyl ether resulted in their high recoveries. LC calibration curves based on the extracts from the rat plasma were linear in the range of 25–2,000 ng mL?1 for aliskiren and sitagliptin and 50–4,000 ng mL?1 for valsartan. The limits of quantification were 25 ng mL?1 for aliskiren and sitagliptin and 50 ng mL?1 for valsartan. The precision and accuracy of the method were well within the generally accepted criteria for biomedical analysis. The described method was successfully applied to study the pharmacokinetics of aliskiren, valsartan and sitagliptin following oral administration, individually as well as in combination in Sprague–Dawley rats. The results of the study implied the occurrence of pharmacokinetic interaction upon the co-administration of these three drugs.  相似文献   

12.
A simple and sensitive LC method for the quantitative determination of gemfibrozil in human plasma samples is described. Mometasone furoate was used as the internal standard. Plasma samples were pretreated by protein precipitation using methanol. Separation was performed at 40 °C on a YMC® ODS-A reverse phase column (5 μm particle size, 150 mm × 4.6 mm i.d.) using 0.2% (v/v) triethylamine in water (adjusting to pH 4.0 with phosphoric acid) and acetonitrile (45:55, v/v) as mobile phase which was delivered at 1.5 mL min?1. Ultraviolet detection was performed at 230 nm. The linear concentration range for gemfibrozil was 0.25–50 μg mL?1. The detection limit of this method was 0.1 μg mL?1. Intra- and inter-assay RSD ranged from 0.63 to 2.04% and 1.37 to 4.27%, respectively. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

13.
Xu  Fan  Xu  Guili  Shang  Beicheng  Yu  Fang 《Chromatographia》2009,69(11):1421-1426

A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min−1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL−1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL−1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL−1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.

  相似文献   

14.
A new LC method has been developed and validated for the direct determination of bupropion and its main metabolite, hydroxybupropion in human plasma. Plasma samples were analyzed after a simple, one step protein precipitation with trichloroacetic acid using a C8 column and mobile phase, consisting of methanol/acetonitrile/phosphate buffer (10 mM, pH 3.0) (40:10:50, v/v/v) and 20 mM 1-heptane sulfonic acid sodium salt with carbamazepine as the internal standard. UV detection was performed at 214 and 254 nm. The method was validated over the concentration range of 60–2,400 and 150–4,700 ng mL?1 for bupropion and hydroxybupropion, respectively. The intra- and inter-day assay variability was less than 15% for the two analytes. Limit of detection values were 24.8 and 63.4 ng mL?1 for bupropion and hydroxybupropion, respectively. The method developed was applied to quantification of bupropion and hydroxybupropion in human plasma.  相似文献   

15.
A simple and rapid reversed-phase LC method was developed and validated for simultaneous determination of three flavonoids, quercetin (QU), kaempferol (KA) and isorhamnetin (IS), in rabbit blood plasma. The plasma was deproteinized using 10% trichloroacetic acid and extracted by n-butanol–acetoacetate solvent prior to LC analysis. The analyte was separated on a reversed-phase column with acetonitrile and 0.1% phosphoric acid in water (27:73, v/v) as mobile phase at a flow-rate of 0.8 mL min?1, and UV detection wavelength at 369 nm. By this developed method, the concentrations of QU, KA and IS were linearly related to their responses in the range of 0.05–2.5 μg mL?1. The precision and accuracy for QU, KA and IS in plasma were within ±15% except for the limit of quantitation (LOQ), where they were within ±20%. The validated method has been successfully applied in the pharmacokinetic study of QU, KA and IS in rabbits after intragastric administration of an ethanol extract from traditional Chinese medicine Pollen Typhae.  相似文献   

16.
A rapid LC method with UV detection was developed for the quantification of carboxylic acid metabolite of clopidogrel in human plasma. Following a simple protein precipitation using a mixture of methanolic solution of ZnSO4, the analyte and commercially available internal standard were separated using a mobile phase of water–acetonitril (85:15, v/v) adjusted to pH 3.5 on a Chromolith C18 column at a flow rate of 2.5 mL min?1 with a total retention time of 4 min. Linearity was verified over the range of 20–3,000 ng mL?1 where the LOQ was 20 ng mL?1. This method was applied in a pharmacokinetic study.  相似文献   

17.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

18.
A simple, sensitive and selective LC–MS–MS method has been developed for the simultaneous determination of acyclovir and valacyclovir in human plasma. Acyclovir and valacyclovir in plasma were concentrated by solid phase extraction and chromatographed on a C18 column using a mobile phase of 0.1% formic acid: methanol (30:70% v/v). The method was validated over a linear range of 47–10,255 and 5–1,075 ng mL?1 for acyclovir and valacyclovir respectively. The LOQs were 47.6 and 5.0 ng mL?1. The validated method was applied for the quantitation of acyclovir and valacyclovir from plasma samples in a pharmacokinetic study.  相似文献   

19.
Taurine is an amino acid which is not incorporated into proteins but found in the cytosol of many mammalian cells, in high concentrations (2–30 mM). Increase in plasma taurine concentration has already been reported after surgical trauma, X-radiation, muscle necrosis, carbon tetrachloride-induced liver damage, and paracetamol overdose. Plasma taurine concentration was measured using LC with fluorescence detection following derivatization by o-phtalaldehyde plus 3-mercapto-propionic acid and α-aminobutyric acid as internal standard. Under these conditions the retention time of taurine was 10 min. This method was sensitive enough, to quantify 150 pg mL?1 and detect 50 pg mL?1 of taurine ranging normally between 65 and 179 mmol L?1 (8–22 μg mL?1). The validated method allowed simple determination of human plasma taurine in pharmacokinetic and biomarker studies.  相似文献   

20.
A simple and novel LC method has been developed for determination of isepamicin (ISP) in rat plasma, an aminoglycoside antibiotic agent. After protein precipitation and clean-up procedure to remove lipophilic contaminants, ISP is derivatized by pre-column with 9-fluorenylmethyl chloroformate for fluorescence detection. Chromatographic separations are achieved using a C18 column and mobile phase consisting of water and acetonitrile (68/32, v/v). Amikacin was used as an internal standard. The calibration curve was linear over a concentration range of 0.625–15 μg mL?1. The limit of quantification was 0.45 μg mL?1. The intra- and inter-day variabilities of ISP were both less than 5%. Both derivatives were stable for at least a week at ambient condition. This assay procedure should have useful application in therapeutic drug monitoring of ISP. The limit of detection was 0.10 μg mL?1. The specificity, assay linearity, low level assay linearity and assay repeatability were also investigated. The established method provides a reliable bioanalytical method to carry out isepamicin pharmacokinetics in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号