首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nanotubular titania film was prepared in situ on titanium wire and was used as the fiber substrate for solid-phase microextraction (SPME) because of its high surface-to-volume ratio, easy preparation, and mechanical stability. Three different functional coatings, β-cyclodextrin (β-CD), β-cyclodextrin-co-poly(ethylenepropylene glycol) (β-CD/PEG), and polyethylene glycol (PEG)-based sorbents were chemically bonded to the nanostructured wire surface via sol-gel technology to further enhance the absorbing capability and extraction selectivity. Coupled to gas chromatography-flame ionic detection (GC-FID), the prepared SPME fibers were investigated using diverse compounds. The results indicated that the fibers showed good mechanical strength, excellent thermal stability, and wonderful capacity and selectivity to polar compounds, including polar aromatic compounds, alcohols, and ketones. Combining the superior hydrophilic property of a bonded functional molecule and the highly porous structure of a fiber coating, the prepared PEG-coated SPME fiber showed much higher adsorption affinity to ephedrine and methylephedrine than β-CD and β-CD/PEG fibers. The as-established PEG-coated SPME-GC analytical method provided excellent sensitivity (LODs, 0.004 and 0.001 ng mL–1 for ephedrine and methylephedrine, respectively) and better linear range (0.01–2 000 μg L?1). In addition, it has surprising repeatability and reproducibility. Finally, the present approach was used to analyze ephedrine and methylephedrine from real urine samples, and reliable results were obtained.
Figure
Preparation and application of sol-gel adsorbents/nanotublar tiatinia-coated SPME fibers  相似文献   

2.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

3.
Multi-walled carbon nanotubes were evaluated as sorptive packing material for in-tube microextraction (ITEX2) in combination with GC-MS for the analysis of benzene, toluene, ethylbenzene, xylenes, and naphthalene in aqueous samples. For method development, a three-level full factorial design of experiment (DoE) was performed incorporating extraction temperature, number of extraction strokes, and extraction flow. The statistical analysis of method development showed that all considered extraction parameters significantly affected the extraction yield. Furthermore, it was shown that some factors significantly interacted with each other, which indicates the advantage of using DoE for method development. The thereby optimized ITEX2 protocol was validated regarding its linear dynamic range, method detection limit (MDL), and precision. The MDLs of investigated analytes ranged between 2 ng L?1 for naphthalene and 11 ng L?1 for p-xylene. The relatively low MDL obtained for naphthalene, despite its comparably low air–water partitioning, can be explained by its strong interaction with carbon nanotubes. All obtained MDLs are at least comparable to previous reports on microextraction techniques, emphasizing both the quality of ITEX2 and the highly promising sorbent characteristics of carbon nanotubes. Furthermore, the method was applied to three real samples, which demonstrated good recoveries of analytes from tap water, a bank filtrate, and an effluent from a wastewater treatment plant.
Figure
MWCNTs as sorptive material for ITEX2  相似文献   

4.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

5.
We describe a simple method for the simultaneous determination of organolead and organomanganese compounds in seawater samples. It is based on ultrasound-assisted emulsification microextraction. Trimethyllead, triethyllead, tetraethyllead, cyclopentadienylmanganese tricarbonyl and its methyl derivative were separated and determined using gas chromatography and mass spectrometry. Trimethyllead and triethyllead were derivatized with sodium tetraphenylborate before being submitted to the preconcentration step. Detection limits ranged from 7.0 to 41 ng L?1 depending on the compound. Recoveries ranged from 84 to 118 %, depending on the compound and the sample analyzed. Seawater samples were collected at different sites of the Cartagena Bay and none of the target analytes were found at levels above the corresponding detection limits.
Figure
The most relevant organomanganese and organolead compounds can be monitorized in seawaters by using a relatively simple instrumentation (Gas chromatography–mass spectrometry). Advantage is taken of ultrasound-assisted emulsification microextraction that involves minimal amounts of organic solvents  相似文献   

6.
We report on a fast, simple and accurate method for the determination of proline in urine samples by employing a nanostructured film of conducting polypyrrole for electrochemically controlled solid-phase microextraction, and ion mobility spectrometry (IMS) for detection. This method has the advantages of simple sample preparation and a sensitivity of IMS to proline that is higher than that for other amino acids. The calibration curve is linear in the range of 0.5–60 μg L?1 (4–521 nmol L?1), and the detection limit is 0.2 μg L?1. The electrochemical potentials for uptake and release were optimized. The method was successfully applied to the clean-up and quantitation of trace amounts of proline in urine samples.
Figure
Proline determination by electrochemically controlled solid phase microextraction coupled to ion mobility spectrometry  相似文献   

7.
Chenyu Li  Ligang Chen  Wei Li 《Mikrochimica acta》2013,180(11-12):1109-1116
We report on a method for the extraction of organophosphorus pesticides (OPPs) from water samples using mixed hemimicelles and magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) modified by cetyltrimethylammonium. Fe3O4@TiO2 nanoparticles were synthesized by a hydrothermal process and then characterized by scanning electron microscopy and Fourier transform IR spectrometry. The effects of the quantity of surfactant, extraction time, desorption solvent, pH value, extraction volume and reuse of the sorbent were optimized with respect to the extraction of OPPs including chlorpyrifos, dimethoate, and trichlorfon. The extraction method was applied to analyze OPPs in environmental water using HPLC along with UV detection. The method has a wide linear range (100–15,000 ng L?1), good linearity (r?>?0.999), and low detection limits (26–30 ng L?1). The enrichment factor is ~1,000. The recoveries (at spiked levels of 100, 1,000 and 10,000 ng L?1) are in the range of 88.5–96.7 %, and the relative standard deviations range from 2.4 % to 8.7 %.
Figure
Schematic illustration of the preparation of CTAB coated Fe3O4@TiO2 and its application as SPE sorbent for enriching OPPs  相似文献   

8.
A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N’-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm?1. Good linear calibration curves (R 2?>?0.99) were obtained, and the limits of detection (S/N?=?3) for the analytes were found to be in the range 1.2–13.5 ng mL?1. The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.
Graphical abstract
?  相似文献   

9.
Methylisothiocyanate (MITC) is the main degradation product of metam sodium, a soil disinfectant widely used in agriculture, and is responsible for its disinfectant properties. Because MITC is highly toxic and volatile, metam sodium has to be applied in a manner that tries to reduce atmospheric emissions but still maintains adequate concentration of MITC in soil to ensure its disinfectant effect. Thus, monitoring of MITC concentrations in soil is required, and to this end sensitive, fast, and reliable analytical methods must be developed. In this work, a headspace solid-phase microextraction (HS-SPME) method was developed for MITC determination in water and soil samples using gas chromatography-tandem mass spectrometry (GC–MS–MS) with a triple-quadrupole analyzer. Two MS–MS transitions were acquired to ensure the reliable quantification and confirmation of the analyte. The method had linear behavior in the range tested (0.026–2.6 ng mL?1 in water, 1–100 ng g?1 in soil) with r 2 over 0.999. Detection limits were 0.017 ng mL?1 and 0.1 ng g?1 in water and soil, respectively. Recoveries for five replicates were in the range 76–92 %, and RSD was below 7 % at the two spiking levels tested for each matrix (0.1 and 1 ng mL?1 for water, 4 and 40 ng g?1 for soil). The potential of using multiple HS-SPME for analyzing soil samples was also investigated, and its feasibility for quantification of MITC evaluated. The developed HS-SPME method was applied to soil samples from experimental plots treated with metam sodium following good agriculture practices. Figure
?  相似文献   

10.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

11.
We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L?1 (excepted for toluene with 25 ng L?1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.
Figure
Schematic representation of the direct immersion / headspace (micro)solid phase extraction using oxidized single walled carbon nanohorns supported on a microporous hollow fiber for the extraction of volatile organic compound from water samples.  相似文献   

12.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

13.
We report on the application of emulsification-based dispersive liquid microextraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L?1, the limit of detection (at S/N?=?3) is 30 pg L?1, the relative standard deviations for seven replicate analyses (at 0.56 μg L?1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination.
Figure
Emulsification based dispersive liquid microextraction is presented for determination of cadmium in water samples  相似文献   

14.
Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl4 ? or SbCl4 ? anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g?1 for iron and 27.5 mg g?1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L?1, and detection limits of 0.17 and 3.5 ng L?1. The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d).
Figure
?  相似文献   

15.
A method is presented for matrix separation, preconcentration and determination by hydride generation atomic fluorescence spectrometry of trace amounts of Se(IV). It is based on solidified floating drops of 1-undecanol that are capable of extracting the target analyte after chelation with a water soluble ligand and subsequent ultrasound-assisted back-extraction into a aqueous solution. Hydride generation was then accomplished by reaction with a solution of sodium borohydride. Under optimized conditions, an enrichment factor of 15 and a linear calibration plot in the range from 0.01 to 5.0 μg L?1 were achieved using a 10.0 mL sample. The detection limit (3σ) is 7.0 ng L?1, and the relative standard deviation (RSD) is 2.1% at 1.0 μg L?1 (n?=?11). The method was applied to determination of Se(IV) in different real water samples through recovery experiments and subsequently validated against two certified reference materials.
A solidified floating organic drop microextraction coupled with hydride generation atomic fluorescence spectrometry for the determination of Se(IV) is described.  相似文献   

16.
A functionalized gold-nanoparticle bio-barcode assay, based on real-time immuno-PCR (IPCR), was designed for the determination of 3,4,3',4'-tetrachlorobiphenyl (PCB77). 15 nm gold nanoparticles were synthesized, and modified with thiol-capped DNA and goat anti-rabbit IgG. The nanoparticle probes were used to replace antibody–DNA conjugate in the IPCR, and were fixed on the PCR tube wall via the immune reaction. Real-time PCR was performed to quantify the DNA signal directly. Under optimized conditions, the new method was used to detect PCB77 with a linearity range from 5 pg L?1 to 10 ng L?1, and the limit of detection (LOD) was 1.72 pg L?1. Real samples of Larimichthys polyactis, collected from the East China Sea, were analyzed. Recovery was from 82 % to 112 %, and the coefficient of variation (CV) was acceptable. The results were compared with GC–ECD, revealing that the method would be acceptable for providing rapid, semi-quantitative, and reliable test results for making environmental decisions.
FIGURE
?  相似文献   

17.
We have developed a method for the microextraction of lead(II) ion. It is based on the use of suspended zirconia nanoparticles modified with the reagent cadion. Pb(II) ions in the sample are adsorbed onto the modified zirconia nanoparticles suspended in the solution of a non-ionic surfactant. After cloud formation and phase separation by sedimentation, the surfactant rich phase was acidified and diluted to 100 μL with 3.0 mol L?1 nitric acid and ultrasonicated for a few seconds to desorb the analyte from the sorbent. The mixture was centrifuged and 10 μL of the supernatant liquid phase along with 10 μL of the Pd/Mg modifier were submitted to the electrothermal atomic absorption spectrometer. The parameters affecting the extraction efficiency were optimized by the univariable method. Under the optimized conditions, a sample volume of 40 mL resulted in an enhancement factor of 384 and a detection limit (defined as 3Sb/m) of 2.2 ng L?1. The method was successfully applied to the determination of Pb(II) in water, tea and rice samples. Accuracy was determined by the recovery experiments and the analysis of two certified reference materials.
Figure
A new microextraction method for lead (II) is developed. It is based on the use of suspended zirconia nanoparticles modified with the reagent cadion. The method was successfully applied to the determination of the Pb(II) in water, tea and rice samples. Accuracy was determined by the recovery experiments and the analysis of two certified reference materials.  相似文献   

18.
We have developed a new method for the microextraction and speciation of arsenite and arsenate species. It is based on ionic liquid dispersive liquid liquid microextraction and electrothermal atomic absorption spectrometry. Arsenite is chelated with ammonium pyrrolidinedithiocarbamate at pH 2 and then extracted into the fine droplets of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide which acts as the extractant. As(V) remains in the aqueous phase and is then reduced to As(III). The concentration of As(V) can be calculated as the difference between total inorganic As and As(III). The pH values, chelating reagent concentration, types and volumes of extraction and dispersive solvent, and centrifugation time were optimized. At an enrichment factor of 255, the limit of detection and the relative standard deviation for six replicate determinations of 1.0 μg?L?1 As(III) are 13 ng?L?1 and 4.9 %, respectively. The method was successfully applied to the determination of As(III) and As(V) in spiked samples of natural water, with relative recoveries in the range of 93.3–102.1 % and 94.5–101.1 %, respectively.
Figure
Speciation of arsenite and arsenate by ionic liquid dispersive liquid-liquid microextraction - electrothermal atomic absorption spectrometry  相似文献   

19.
We have developed a simple method for the microextraction of the carbamate pesticides carbofuran, pirimicarb, and carbaryl. It is termed ionic liquid magnetic bar microextraction (ILMB-ME) and based on an ionic liquid deposited on a magnetic stirrer bar placed in a sealed short PCR tube into which microholes where pinned. When placed in a vial containing the aqueous sample solution, the ILMB tumbles freely in the aqueous solution and the carbamates are extracted into the ionic liquid phase which then was determined by HPLC. The enrichment factors for carbofuran, pirimicarb, and carbaryl are 107, 94, 95, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S/N), are 1.4?μg?L?1 for carbofuran, 3.4?μg?L?1 for pirimicarb, and 1.7?μg?L?1 for carbaryl. The repeatability, carried out by extracting water samples spiked with carbamate levels of 200?μg?L?1, yielded relative standard deviations between 2.9 and 6.0?%, (for n?=?5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 5 and 50?μg?L?1 are in the range from 86 to 98?%, and from 80 to 96?%, respectively. We conclude that this is a simple, practical and efficient method for the determination of fungicide residues in real water samples.
Figure
?  相似文献   

20.
We show that a metal-organic framework (MOF) sustained by a nanosized Ag12 cuboctahedral node can be applied to selectively extract traces of lead(II) ion from environmental water samples. The MOF was characterized by thermogravimetric and differential thermal analysis, scanning electron microscopy, FTIR, and X-ray diffraction. The effects of pH value, flow rates, of type, concentration and volume of the eluent, of break-through volume and potentially interfering ions on the separation and determination of lead were evaluated. Following desorption with EDTA, Pb(II) was quantified by FAAS. The use of the MOF results in excellent analytical figures of merit including an analytical range from 2 to 180 μg L?1 of Pb(II) (R2?>?0.99); a limit of detection of 500 ng L?1; an adsorption capacity of 120 mg g?1; an extraction efficiency of >95 %, and a relative standard deviation of <4 % (for eight separate column experiments).
Figure
In the present study, for the first time, metal-organic framework sustained by nanosized Ag12 cuboctahedral node was used for selective solid-phase extraction and ultra-trace determination of lead in water samples without any modifications on the mentioned MOF  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号