首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method was developed for the determination of fungicides in red wine using ultrasound-assisted ionic liquid dispersive liquid–phase microextraction followed by high-performance liquid chromatography. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (IL) was quickly disrupted by ultrasonication and dispersed in wine as fine droplets. At this stage, the analytes were extracted into the fine droplets of IL. After centrifugation, the concentration of the enriched fungicides in the sedimented phase was determined. Extraction conditions including the type of extraction solvent, the extraction solvent volume, ultrasonication time, centrifugation time and sample pH were optimized. The performance of the method was studied in terms of linearity, precision, and recovery. Quantitative recoveries (>70%) except for pyrimethanil were obtained, and method precision was also satisfactory (RSD?<?10%). Enrichment factors range from 100 to 200, and the limits of detection are at the low μg per liter level for most of the target compounds.
Figure
The typical chromatograms of spiking at the concentration level 50 μgL?1 of each analytes in a red wine. (1) pyrimethanil (2) fenarimol (3) epoxiconazole (4) kresoxim-methyl (5) cypronidil (6) prochloraz (7) diniconazole  相似文献   

2.
The ionic liquid based vortex-assisted liquid-liquid microextraction (IL-VALLME) procedure was developed and validated for determination of four pesticides in a manufacturing wastewater sample: acetamiprid, imidacloprid, linuron and tebufenozide. The following ILs were tested as extractants: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium hexafluorophosphate. The extraction efficiency and the enrichment factor dependencies on the type and amount of ionic liquids, extraction and centrifugation time, volume, pH and the ionic strength of the sample, were investigated. The concentration of pesticides in the aqueous and IL phases was determined by HPLC-DAD. The optimal conditions for extraction of the pesticides were determined: the aqueous sample volume of 10 mL with the addition of 0.58 g NaCl, 40 µL of the 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as extractant, 2 min extraction under vigorous mixing applying the vortex agitator, and separation of the phases by centrifugation for 2 min at 1000 rpm. The calibration curves of the pesticides showed good linear relationship (r2 ≥ 0.9996) in the concentration range from 0.005 to 1.00 mg L?1. Determined LOD values are 1.8, 2.3, 4.8 and 8.6 µg L?1 for Tebf, Linr, Acet and Imid, respectively. The optimized IL-VALLME was applied for determination of the pesticides in the pesticide manufacturing wastewater.   相似文献   

3.
We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18???g?L?1, and the relative standard deviation is 3.0% (at n?=?5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples.
Figure
?  相似文献   

4.
We have developed a new method for the microextraction and speciation of arsenite and arsenate species. It is based on ionic liquid dispersive liquid liquid microextraction and electrothermal atomic absorption spectrometry. Arsenite is chelated with ammonium pyrrolidinedithiocarbamate at pH 2 and then extracted into the fine droplets of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide which acts as the extractant. As(V) remains in the aqueous phase and is then reduced to As(III). The concentration of As(V) can be calculated as the difference between total inorganic As and As(III). The pH values, chelating reagent concentration, types and volumes of extraction and dispersive solvent, and centrifugation time were optimized. At an enrichment factor of 255, the limit of detection and the relative standard deviation for six replicate determinations of 1.0 μg?L?1 As(III) are 13 ng?L?1 and 4.9 %, respectively. The method was successfully applied to the determination of As(III) and As(V) in spiked samples of natural water, with relative recoveries in the range of 93.3–102.1 % and 94.5–101.1 %, respectively.
Figure
Speciation of arsenite and arsenate by ionic liquid dispersive liquid-liquid microextraction - electrothermal atomic absorption spectrometry  相似文献   

5.
We have developed a simple method for the microextraction of the carbamate pesticides carbofuran, pirimicarb, and carbaryl. It is termed ionic liquid magnetic bar microextraction (ILMB-ME) and based on an ionic liquid deposited on a magnetic stirrer bar placed in a sealed short PCR tube into which microholes where pinned. When placed in a vial containing the aqueous sample solution, the ILMB tumbles freely in the aqueous solution and the carbamates are extracted into the ionic liquid phase which then was determined by HPLC. The enrichment factors for carbofuran, pirimicarb, and carbaryl are 107, 94, 95, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S/N), are 1.4?μg?L?1 for carbofuran, 3.4?μg?L?1 for pirimicarb, and 1.7?μg?L?1 for carbaryl. The repeatability, carried out by extracting water samples spiked with carbamate levels of 200?μg?L?1, yielded relative standard deviations between 2.9 and 6.0?%, (for n?=?5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 5 and 50?μg?L?1 are in the range from 86 to 98?%, and from 80 to 96?%, respectively. We conclude that this is a simple, practical and efficient method for the determination of fungicide residues in real water samples.
Figure
?  相似文献   

6.
We report on a simple, rapid and efficient extraction procedure, referred to as ultrasound-assisted cold-induced aggregation (USA-CIAME), for the extraction of phenol from aqueous samples. In this method, very small amounts of the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (the extractant) are dissolved in a sample solution containing phenol and ultrasonicated for 1?min. The solution is cooled in an ice bath upon which a cloudy solution forms. Following centrifugation, the extractant phase settles at the bottom of a conical-bottom centrifuge tube. Phenol is photometrically determined after its chromogenic reaction with 4-aminoantipyrine in the presences of hexacyanoferrate at pH 10.0. Compared to the conventional cold-induced aggregation microextraction (CIAME) and dispersive liquid liquid microextraction (DLLME), the optimized approach displays the highest extraction efficiency at room temperature, and the shortest extraction time (5?min). Key parameters affecting the performance were evaluated and optimized. Under optimum conditions, the limit of detection of phenol is 0.86?μg?L?1, and the enrichment factor is 75. The calibration graph as linear over the range from 3 to 150?μg?L?1, and the relative standard deviation is 2.65% (n?=?5). The method was successfully applied to the determination of phenol in water samples.
Figure
Schematic representation Ultrasound assisted Cold- induced aggregation (USA-CIAME), which is effective sample pretreatment technique present large extraction efficiencies for the extraction and determination of volatile phenol from aqueous samples and represent a new platform for separation techniques.  相似文献   

7.
We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20?ng?mL?1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200?ng?mL?1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.
Figure
Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry  相似文献   

8.
We have prepared the hydrophobic amino-functionalized ionic liquid (IL) 1-(2-aminoethyl)-3-butylimidazolium hexafluorophosphate and investigated its extraction behavior for copper(II) ion as a model cation. The IL, due to the presence of an amino group, is capable of complexing Cu(II) in a ratio of 6:1. The parameters affecting the extraction efficiency were optimized. The IL-based liquid–liquid microextraction was successfully applied to the analysis of Cu(II) in an environmental water standard reference material. The results are promising in terms of liquid–liquid microextraction, separation, and preconcentration of Cu(II).
Figure
A hydrophobic amino-functionalized ionic liquid (IL) [NH2C2C4im][PF6] was synthesized. The IL exhibits good extractability for copper (II) ion due to the presence of an amino group.  相似文献   

9.
A hydrophobic ionic liquid was finely dispersed in aqueous solution along with a hydrophilic ionic liquid. Following centrifugation, the two phases aggregate to form relatively large droplets. Based on this phenomenon, a method termed ionic liquid/ionic liquid dispersive liquid-liquid microextraction was developed. It was applied to the enrichment of triclosan (TCS) and triclocarban (TCC) from water samples prior to HPLC with electrospray tandem MS detection. The type and volume of the hydrophobic ionic liquid (the extraction solvent) and the hydrophilic ionic liquid (the disperser solvent), salt content, and extraction time were optimized. Under optimum conditions, the method gives a linear response in the concentration ranges from 0.5 to 100???g L?1 for TCC and from 2.5 to 500???g L?1 for TCS, respectively. The limits of detection are 0.23 and 0.35???g L?1, and the repeatability is 5.4 and 6.4% for TCC and TCS, respectively. The method was validated with four environmental water samples, and average recoveries of spiked samples were in the range from 88% to 111%. The results indicate that the method is a promising new approach for the rapid enrichment and determination of organic pollutants.
Ionic liquids [C8MIM][PF6] and [C4MIM][BF4] were used as extractant and disperser in dispersive liquid-liquid microextraction for the enrichment and determination of triclosan and triclocarban in environmental water samples prior to HPLC-ESI-MS/MS. Experimental results indicated that it was a feasible alternative to existing methods.  相似文献   

10.
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L?1 and 9 μg L?1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L?1), and coefficients of variation of 7 % and 5 % (n?=?5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Figure
?  相似文献   

11.
A selective and low organic-solvent-consuming method of sample preparation combined with high-performance liquid chromatography with diode-array detection is introduced for analysis of phthalic acid esters in edible oils. Sample treatment involves initial liquid–liquid partitioning with acetonitrile, then QuEChERS cleanup by dispersive solid-phase extraction with primary secondary amine as sorbent. Preconcentration of the analytes is performed by ionic-liquid-based dispersive liquid–liquid microextraction, with the cleaned-up extract as disperser solvent and 1-hexyl-3-methylimidazolium hexafluorophosphate as extraction solvent. Under the optimized conditions, correlation coefficients (r) were 0.998–0.999 and standard errors (S y/x ) were 2.67–3.37?×?103 for calibration curves in the range 50–1000 ng g?1. Detection limits, at a signal-to-noise ratio of 3, ranged from 6 to 9 ng g?1. Intra-day and inter-day repeatability, expressed as relative standard deviation, were in the ranges 1.0–6.9 % and 2.4–9.4 %, respectively. Recovery varied between 84 % and 106 %. The developed method was successfully used for analysis of the analytes in 28 edible oils. The dibutyl phthalate content of four of the 28 samples (14 %) exceeded the specific migration limit established by domestic and international regulations.
Figure
?  相似文献   

12.
We report on the salt-assisted liquid-liquid microextraction of cationic complexes of Cr(VI) ion using the hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoraborate and potassium hydrogen phosphate. This is a novel, simple, non-toxic and effective technique for sample pretreatment technique that displays large extraction efficiency and represents a new platform where Cr(VI) is complexed with 1,5-diphenylcarbazide (DPC) in sulfuric acid medium. It was applied to the extraction of Cr(VI) in the form of the Cr(VI)-DPC complex prior to its determination by flame atomic absorption spectrometry. Cr(III) ion also can be determined by this procedure after oxidation to Cr(VI). Extraction is mainly affected by the amount of water-soluble IL, the kind and quantity of inorganic salts, by pH and the concentration of DPC. Calibration plots are linear in the range from 3 to 150?μg?L?1 of Cr(VI), and the limit of detection is 1.25?μg?L?1. The method was successfully applied to the speciation and determination of trace levels of Cr(III) and Cr(VI) in environmental water samples containing high levels of dissolved salts or food grade salts.
Figure
Schematic representation SALLME-IL enrichment method (Salt assisted liquid–liquid microextraction with hydrophilic ionic liquid)  相似文献   

13.
We report on a new electrode for the determination of adenosine-5??-triphosphate (ATP). It is based on modified carbon paste electrode that contains an ionic liquid (IL) as the binder. The electrode shows strong electrocatalytic oxidative activity towards ATP at pH 4.5 in giving a well-defined single oxidation peak. The oxidation reaction is adsorption-controlled and due to the presence of the highly conductive IL. The electron transfer rate constant was calculated to be 2.04×10?C3 s?C1, and the surface coverage is 1.11×10?C10 mol cm?C2. Under the selected conditions, the oxidation peak current changes linearly with the concentration of ATP in the range from 5.0 to 1000???mol L?1 and a detection limit of 1.67???mol L?1 (3???) as determined by differential pulse voltammetry. The method displays good selectivity and was applied to the determination of ATP injection samples with satisfactory results.
Figa
An ionic liquid 1-carboxyl-methyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode was fabricated and used for the sensitive detection adenosine-5??-triphosphate (ATP). The electrochemical oxidation of ATP was greatly enhanced due to the presence of IL in the carbon paste and the electrochemical parameter was calculated.  相似文献   

14.
We have extracted ten phthalate esters (C1 to C8) using six different micro-scale methods for extraction, and then separated them by capillary liquid chromatography coupled to UV detection. The methods included liquid-liquid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, dispersive liquid-liquidmicroextraction, dispersive liquid-liquid microextraction solidification of floating organic droplets, and cloud point extraction. The linear range of the analytes is from 0.5 to 50 μg mL?1, and the detection limits range from 0.02 to ~0.17 μg mL?1. The precision and accuracy of all intra- and inter-day analyses are <5.5%. We find that dispersive liquid-liquid microextraction solidification of floating organic droplet (DLLME-SFO) is the best method for quantification of most phthalate esters in water samples and cosmetics because of its low limit of detection and high extraction efficiencies.
Figure
Phthalate esters were extracted by six micro-scale extraction methods and then determinated by capillary liquid chromatography coupled with ultraviolet detector (CapLC-UV).  相似文献   

15.
Liquid phase microextraction (LPME) enables analytes to be extracted with a few microliters of an organic solvent. LPME is a technique for sample preparation that is extremely simple, affordable and virtually a solvent-free. It can provide a high degree of selectivity and enrichment by eliminating carry-over between single runs. A variety of solvents are known for the extraction of the various analytes. These features have led to the development of techniques such as single drop microextraction, hollow fiber LPME, dispersive liquid-liquid microextraction, and others. LPME techniques have been applied to the analysis of pharmaceuticals, food, beverages, and pesticides. This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover (a) sample treatment techniques in general, (b) single-drop microextraction, (c) extraction based on the use of ionic liquids, (d) solidified floating organic drop microextraction, and various other techniques. Contains 149 references.
Figure
This review covers the history of LPME methods, and then gives a comprehensive collection of their application to the preconcentration and determination of pesticides in various matrices. Specific sections cover sample treatment techniques in general, single-drop microextraction, extraction based on the use of ionic liquids, solidified floating organic drop microextraction, and various other techniques.  相似文献   

16.
We have evaluated an in-situ ionic liquid-dispersive liquid-liquid microextraction procedure for the determination of six endocrine disrupting phenols in seawaters and industrial effluents using HPLC. The optimized method requires 38???L of the water-soluble ionic liquid 1-butyl-3-methylimidazolium chloride, and 5?mL of seawater or industrial effluent. After appropriate work-up, a drop (~10???L) of an ionic liquid is formed that contains the analytes of interest. It is diluted with acetonitrile and injected into the HPLC system. This procedure is accomplished without heating or cooling the solutions. The method is characterized by (a) average relative recoveries of 90.2%, (b) enrichment factors ranging from 140 to 989, and (c) precisions (expressed as relative standard deviations) of less than 11% when using a spiking level of 10?ng?mL?1. The limits of detection range from 0.8?ng?mL?1 for 4-cumylphenol to 4.8?ng?mL?1 for bisphenol-A.
Figure
Scheme of the in situ IL-DLIME procedure to determine endocrine disrupting phenols in environmental waters.  相似文献   

17.
A hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), was applied as nonaqueous solvent for the generation of hydroxy radical (?OH) through glucose oxidase-catalyzed Fenton reaction. The enzyme catalyzes the oxidation of glucose, and the produced H2O2 further reacts with transition metal ions, generating hydroxyl radicals. They attacked DNA and led its damage. This was detected by square wave voltammetry (SWV) of the electroactive indicator Co(bpy) 3 3+ . It bound more strongly to intact DNA, and the SWV peak currents decreased at the potential of 0.064?V when DNA was damaged. The experimental results testified that the antioxidants, ascorbic acid, aloe-emodin and rutin, inhibited oxidative DNA damage by hydroxyl radicals. The method is promising for rapid, sensitive, and inexpensive detection of DNA damage.
Figure
Schematic diagram for working principle of SWV detection of in situ DNA damage for DNA-GOx film.  相似文献   

18.
We report on an in-syringe dispersive liquid-liquid microextraction (DLLME) technique and its application to the determination of the total phenol index in natural waters. Xylene was used as extraction solvent in combination with a mixture of acetonitrile and n-propanol as dispersion solvents. The analytical procedure consists of mixing the sample with buffer, reacting it with 4-aminoantipyrine and potassium hexacyanoferrate, DLLME, phase separation, and index quantification and was automated using the multisyringe flow injection analysis technique and takes 200?s only. DLLME was accomplished by aspiration of the mixture of extraction and dispersion solvents followed by the aqueous phases into the syringe at a high flow rate. Phase separation occurs due to aggregation of the floating extractant droplets (with their lower specific density) at the head of the syringe. The extractant containing the chromogenic reaction product is then pushed into an optical waveguide capillary cell and spectrophotometrically detected at 500?nm. Figures of merits include a low limit of detection (0.9?ppb), a preconcentration factor of 20, a linear dynamic range up to 140?ppb, and a general standard deviation of 3.1?%. The method enabled the concentration of phenols in well water samples to be determined with a mean recovery of 101?%.
Figure
Phenol index using in-syringe dispersive liquid-liquid microextraction  相似文献   

19.
We report on the determination of bisphenol A and 2-naphthol in water samples using ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with HPLC. Parameters governing the extraction efficiency (disperser solvent, volume of extraction and disperser solvent, pH, temperature, extraction time) were optimized and resulted in enrichment factors of 112 for bisphenol A and of 186 for 2-naphthol. The calibration curve was linear with correlation coefficients of 0.9995 and 0.9998, respectively, in the concentration range from 1.5 to 200?ng?mL?1. The relative standard deviations are 2.3% and 4.1% (for n?=?5), the limits of detection are 0.58 and 0.86?ng?mL?1, and relative recoveries in tap, lake and river water samples range between 100.1 and 108.1%, 99.4 and 106.2%, and 97.1 and 103.8%, respectively.
Figure
IL-CIA-DLLME has a high enrichment factor (112, 186), acceptable relative recovery (97.1%?C108.1%), good repeatability (2.3%, 4.1%) and a wide linear range(1.5?C200?ng?mL?1 ) for the determination of bisphenol A and 2-naphthol.  相似文献   

20.
We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005 μg?L-1 to 1.0 μg?L-1), a low detection limit (1.7 ng?L-1) and a long-term stability of around 60 days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples.
Figure
The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005 μg·L?1 to 1.0 μg·L?1), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号