首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   

2.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

3.
Nickel oxide nanoparticles (NiO-NPs) were electrodeposited on a film of multi-walled carbon nanotubes to improve the electro-oxidation of nitric oxide (NO). The resulting sensor film exhibits excellent electrocatalytic activity towards NO and was used for the construction of an amperometric sensor for NO that was applied to monitoring the release of NO from sodium nitroprusside in rat kidney. Key operational parameters such as the conditions for deposition, kind of electrolyte and pH value were optimized. The nano-structured sensor possesses numerous active sites for oxidation of NO and thus exhibits good performance including wide linearity, simple operation, and good stability. The response to NO is linear in the concentration range from 80.0?nmol·L?1 to 0.117?mmol·L?1, the limit of detection is 20.0 n mol·L?1. The sensor was developed for real-time monitoring of NO.
Figure
Amperometric response of the sensor to NO released from rat kidney.  相似文献   

4.
We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic–organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25–30 μmol?L?1, and responses are linear up to a concentration of 1 mmol L?1.
Figure
Response (fluorescence lifetime) of a novel optical biosensor for biogenic amines (putrescine, cadaverine) determination based on Pisum sativum diamine oxidase immobilized on magnetically responsive chitosan microparticles with entrapped magnetite encapsulated in inorganic–organic polymer ORMOCER® together with ruthenium complex.  相似文献   

5.
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1?×?10?12 mol·L?1 and 1?×?10?8 mol·L?1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference.
Figure
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The method can detect target DNA with rapid response (30 min) and low interference.  相似文献   

6.
We have immobilized DNA on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical biosensor for catechol. Compared to carbon nanotubes, the use of GO dramatically improved the electrooxidative current of the guanine and adenine moieties in DNA but retained the low background current of unmodified GCEs. Factors such as DNA adsorption time, DNA concentration and pH of solution were investigated to optimize experimental conditions. In the presence of catechol, the voltammetric response to DNA was inhibited due to the interaction between DNA and catechol. The response to adenine is linearly proportional to the concentration of catechol in the range from 1.0?×?10?6 to 1.0?×?10?4 mol·L?1. If catechol is degraded by the combined action of UV light and hydrogen peroxide, the response to DNA is restored. Thus, the modified electrode can act as an efficient biosensor for monitoring the degradation of catechol.
Figure
GO dramatically improved the electrooxidative current of the guanine and adenine moieties in DNA but retained the low background current of unmodified GCEs. While the DNA/GO-modified electrode was applied to monitor catechol, it showed sensitive response to catechol before and after photodegradation treatment.  相似文献   

7.
Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of l-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring.
Figure
The method can quantify the amount of phenylalanine in dried blood spot of newborn by using direct analysis in real time (DART) coupled with triple-quadrupole tandem mass spectrometry  相似文献   

8.
Ferritin was immobilized on a glassy carbon electrode with electrodeposited cobalt oxide nanoparticles, and its direct electron transfer behavior was studied. It exhibits a pair of redox peaks due to direct electron transfer between ferritin and the nanoparticles. Electrochemical parameters including the formal potential (E0??), the charge transfer coefficient (??), and the apparent heterogeneous electron transfer rate constant (ks) were determined. The sensor displays excellent biocatalytic activity in terms of reduction of hydrogen peroxide, and this was applied to electrochemical sensing of hydrogen peroxide.
Figure
In this work, cobalt oxide nanoparticles were electrodeposited on the surface of an electrode for immobilization of ferritin molecules to prepare hydrogen peroxide biosensor. The immobilized protein molecules still preserve their biological activities and have great capability in catalyzing the reduction of hydrogen peroxide.  相似文献   

9.
An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0?×?10?7?~?1.5?×?10?5 mol·L?1 and 2.4?×?10?4?~?3.4?×?10?3 mol·L?1, with a detection limit of 1.0?×?10?7 mol·L?1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.
Figure
In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3?/[Fe(CN)6]4? varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.  相似文献   

10.
A disposable amperometric biosensor for ketone 3-β-hydroxybutyrate (3HB) has been developed successfully. The sensor is based on a screen-printed carbon electrode containing Meldola’s Blue (MB) and sensing components containing nicotinamide adenine dinucleotide (NAD+) and 3-β-hydroxybutyrate dehydrogenase (3HBDH) immobilized in mesoporous silica (FSM8.0) using an aqueous photo-cross-linkable polymer matrix of polyvinyl alcohol (O-391), and it requires only a small sample volume of 10 μL for the measurement. The behavior of a resulting biosensor, i.e., 3HBDH–FSM8.0/NAD+/MB-SPCE, was examined in terms of NAD+ concentration for construction, pH, applied potential, operational range, selectivity, and storage stability. The sensor showed an optimum response at a pH of 7.6 and at an applied potential of ?50 mV. The determination range and the response time for 3HB were from 30 μM to 8 mM and approximately 30 s, respectively. In addition, the sensor was quite stable and maintained >90 % of its initial response after being stored for over 6 months. This result implies that our method provides a novel biosensor for ketone 3-β-hydroxybutyrate which is easy-to-use, cost-effective, and has good reproducibility, which are vital for commercial purposes.
Figure
Layer structure and operation mechanism of 3HB biosensor  相似文献   

11.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

12.
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. The characteristics of the sensor were studied by UV?Cvis spectroscopy and electrochemical methods. The immobilized Hb retained its native secondary structure, undergoes direct electron transfer (with a heterogeneous rate constant of 3.37?±?0.5?s?1), and displays excellent bioelectrocatalytic activity to the reduction of HP. Under the optimal conditions, its amperometric response varies linearly with the concentration of HP in the range from 0.9???M to 17???M. The detection limit is 0.4???M (at S/N?=?3). Due to the commercial availability and low cost of activated carbon nanoparticles, it can be considered as a useful supporting material for construction of other third-generation biosensors.
Figure
A biosensor for hydrogen peroxide (HP) was developed by immobilizing hemoglobin on a glassy carbon electrode modified with activated carbon nanoparticles/Nafion. It can be considered as a useful supporting material for construction of other third-generation biosensors.  相似文献   

13.
Mixed cationic and anionic surfactants were adsorbed on cadmium sulfide quantum dots (CdS QDs) capped with mercaptoacetic acid. The CdS QDs can be extracted into acetonitrile with 98 % efficiency in a single step. Phase separation only occurs at a molar ratio of 1:1.5 between cationic and anionic surfactants. The surfactant-adsorbed QDs in acetonitrile solution display stronger and more stable photoluminescence than in water solution. The method was applied for determination of silver(I) ion based on its luminescence enhancement of the QDs. Under the optimum conditions, the relative fluorescence intensity is linearly proportional to the concentration of silver(I) ion in the range between 50 pmol L?1and 4 μmol L?1, with a 20 pmol L?1 detection limit. The relative standard deviation was 1.93 % for 9 replicate measurements of a 0.2 μmol L?1 solution of Ag(I).
Figure
?  相似文献   

14.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

15.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

16.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

17.
We have developed a lactate biosensor based on a bionanocomposite (BNC) composed of titanium dioxide nanoparticles (TiO2-NPs), photocatalytically reduced graphene, and lactate oxidase. Graphene oxide was photochemically reduced (without using any chemical reagents) in the presence of TiO2-NPs to give graphene nanosheets that were characterized by atomic force microscopy, Raman and X-ray photoelectron spectroscopy. The results show the nanosheets to possess few oxygen functionalities only and to be decorated with TiO2-NPs. These nanosheets typically are at least 1 μm long and have a thickness of 4.2 nm. A BNC was obtained by mixing lactate oxidase with the nanosheets and immobilized on the surface of a glassy carbon electrode. The resulting biosensor was applied to the determination of lactate. Compared to a sensor without TiO2-NPs, the sensor exhibits higher sensitivity (6.0 μA mM?1), a better detection limit (0.6 μM), a wider linear response (2.0 μM to 0.40 mM), and better reproducibility (3.2 %).
?  相似文献   

18.
We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm?2 mM?1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors.
Figure
Individual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm?2 mM?1 for uric acid detection.  相似文献   

19.
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA)  相似文献   

20.
A surface plasmon resonance (SPR) immunoassay for on-line detection of the strobilurin fungicide pyraclostrobin in untreated fruit juices is presented. The analysis of pyraclostrobin residues is accomplished in apple, grape, and cranberry samples by monitoring the recognition events occurring separately in a two-channel home-made SPR biosensor. Covalent coupling of the analyte derivative results in a reversible method, enabling more than 80 measurements on the same sensor surface. Optimization of the immunoassay conditions provides limits of detection as low as 0.16?μg?L?1. The selectivity and reproducibility of the analysis is ensured by studying both non-specific interactions with unrelated compounds and inter-assay coefficients of variation. Excellent recovery ranging from 98 to 103?% was achieved by a simple 1:5 dilution of fruit juice with assay buffer before the analysis. The lack of previous cleaning and homogenization procedures reduces the analysis time of a single food sample to only 25?min, including the regeneration cycle.
Figure
Schematic representation of the SPR platform  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号