首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of CpMoIr3(μ-CO)3(CO)8 (1) with stoichiometric amounts of phosphines afford the substitution products CpMoIr3(μ-CO)3(CO)8−x (L)x (L = PPh3, x = 1 (2), 2 (3); L = PMe3, x = 1 (4), 2 (5), 3 (6)) in fair to good yields (23–54%); the yields of both 3 and 6 are increased on reacting 1 with excess phosphine. Products 2–5 are fluxional in solution, with the interconverting isomers resolvable at low temperatures. A structural study of one isomer of 2 reveals that the three edges of an MoIr2 face of the tetrahedral core are spanned by bridging carbonyls, and that the iridium-bound triphenyiphosphine ligates radially and the molybdenum-bound cyclopentadienyl coordinates axially with respect to this Molr2 face. Information from this crystal structure, 31P NMR data (both solution and solid-state), and results with analogous tungsten—triiridium and tetrairidium clusters have been employed to suggest coordination geometries for the isomeric derivatives.  相似文献   

2.
制备了V取代的磷钼酸H3+xPMo12-xVxO40x=0,1,2)及1-丁基-3-甲基咪唑溴盐离子液体([C4mim]Br),并采用离子交换的方法制备了系列杂化材料([C4mim]3+xPMo12-xVxO40,x=0,1,2);采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)对所制备样品进行了表征;以H2O2为氧化剂,考察了所得样品催化苯羟基化制苯酚的活性。结果表明,和相应的离子液体及杂多酸相比,杂化材料的催化活性得到了很大的提高,尤其是催化剂[C4mim]5PMo10V2O40,在优化后的条件下,苯的转化率可达到21%,苯酚的选择性在99%以上。而且,该催化剂具有很好的可重复使用性,连续使用五次后,苯的转化率和苯酚的选择性没有明显降低。  相似文献   

3.
A potentially decadentate ligand, 1,1,4,7,10,10-hexakis(3,5-dimethyl-1-pyrazolylmethyl)-1,4,7,10-tetraazadecane (tthd), has been synthesized from the reaction of tri-ethylenetetramine with six equivalents of N-hydroxymethyl-3,5-dimethylpyrazole. The tthd ligand forms coordination compounds, M2(tthd)(ClO4)4(H2O)x, when M is Co, Ni, Cu, Zn and Cd and x = 4–8; and M2(tthd)(A)2(ClO4)2(H2O)x when M is Co and Ni, A is NCS or Cl, and x = 4–8. The cobalt compound, Co2(tthd)(ClO4)2(H2O)2(MeOH)1.75, crystallizes in the triclinic space group P1, a = 1.959(2), b = 1.5657(3), c = 2.1244(3) nm, = 105.5(1), β = 96.9(1), γ = 112.1(1). Due to severe disorder of the anions the structure could only be refined to an Rw, value of 0.099. The ligand acts as a decadentate, dinucleating ligand. The cobalt ions are distorted octahedrally surrounded by five N-atoms of the tthd ligand and an O-atom of water occupying the sixth coordination place. The other perchlorate compounds have very similar structures, as can be concluded from spectroscopic data.

In the thiocyanate and chloride compounds the anions have replaced the coordinated water molecules, resulting in octahedral Ni compounds. With Co thiocyanate, however, tthd acts as an octadentate ligand, resulting only in five-coordinated compounds.  相似文献   


4.
We have calculated the optimized structures and stabilization energies for hydrated clusters of orthoboric acid molecule, B(OH)3(H2O)n (n=1–5), with a hybrid density functional approach. Although some ion-pair structures are revealed in the case of n=4 and 5 clusters, the most stable structure is found to be a non-proton-transferred form up to n=5 hydrated clusters. The calculated IR spectra of the stable B(OH)3(H2O)n of n=3–5 clusters predict small red shifts of hydrogen-bonded OH frequencies. These geometry and IR results are related to the weak acidity nature of orthoboric acid.  相似文献   

5.
The stabilities of the hydrated uranyl phosphates (UO2)3(PO4)2 · 4 H2O, UO2HPO4 · 4 H2O, and UO2(H2PO4) · 3 H2O have been reinvestigated. The compounds identified by thermal analysis have been prepared isothermally and characterized by their strongest X-ray reflections. During dehydration, oxygen was not evolved and the crystalline compounds (UO2)3(PO4)2, (UO2)2P2O7, UO2(PO3)2, and probably (UO2)3P4O)13 were found.

At still higher temperatures, the uranyl phosphates are reduced. The decomposition products lose phosphorus oxide above 1300–1400°C. The present results are summarized in a tentative pseudo-binary phase diagram UOx(x = 3 to 2)—UO2(PO3)2.  相似文献   


6.
MXene是一种新型的二维析氢催化材料,其表面容易被亲水基团O和OH混合覆盖。我们基于第一性原理计算的方法,研究了M_2XO_(2-2x)(OH)_(2x)(M=Ti,V;X=C,N)的析氢催化活性。计算结果显示,M_2XO_(2-2x)(OH)_(2x)的析氢催化活性与其表面OH覆盖率(X)密切相关。对Ti_2CO_(2-2x)(OH)_(2x)来说,OH覆盖率不超过1/3时,具有优异的析氢催化活性。对Ti_2NO_(2-2x)(OH)_(2x)、V_2CO_(2-2x)(OH)_(2x)和V_2NO_(2-2x)(OH)_(2x)来说,OH覆盖率分别达到4/9、1/3和5/9时,才具有最佳的析氢催化活性。接着,电荷分析显示OH覆盖率会显著影响M_2XO_(2-2x)(OH)_(2x)活性位点O基团的电荷量。最后,我们从态密度的角度揭示了析氢催化活性变化的原因,即活性位点O基团的氧化性随OH覆盖率的增大而被削弱。因此,本文提出了调节表面OH覆盖率来获取M_2XO_(2-2x)(OH)_(2x)最佳析氢催化活性状态的方法,这在工业制氢生产过程中具有重要的应用价值。  相似文献   

7.
Homoleptic and mixed -zirconium phosphonates (ZrPs) -Zr(O3PR)2 (R = Me, Bun, Bui, Hex, Oct and Ph) and -Zr(O3PR1)2−x(O3PR2)x were readily prepared in high yields from zirconyl choride and the corresponding phosphonic acids in suitable solvent mixtures under hydrothermal conditions at low fluoride concentrations. They form crystalline aggregates consisting of platelets from ca. 10–20 monolayers thickness, with well-defined surface structures. Impregnation with Cp2ZrCl2 by sublimation or slurry methods provided the first examples of ZrP-supported alkene polymerization catalysts. Crystal morphology and interlayer spacing are unaffected by the impregnation process. Solid-state NMR spectroscopy provides evidence for the integrity of the adsorbed metallocene structure. Covalent attachment of Cp*ZrCl3 to functionalized ZrPs of the type -Zr(O3PR1)1.8(O3PCnH2nOH)0.2 is similarly possible. The new catalysts polymerize ethene with good to excellent activities under mild conditions, even at remarkably low methylalumoxane/zirconocene ratios of 10:1. The polymer is obtained as free-flowing particles, which reflect the morphology of the catalyst supports.  相似文献   

8.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

9.
Reactions of Co33-CBr)(μ-dppm)(CO)7 with {Au[P(tol)3]}2{μ-(CC)n} (n=2–4) have given {Co3(μ-dppm)(CO)7}{μ33-C(CC)nC} [n=2 (1), 3 (2), 4 (3)] containing carbon chains capped by the cobalt clusters. Tetracyanoethene reacts with 2 to give {Co3(μ-dppm)(CO)7}233-C(CC)2C[=C(CN)2]C[=C(CN)2]C} (4). X-ray structural characterisation of 1, 3 and 4 are reported, that for 3 being the first of a cluster-capped C10 chain.  相似文献   

10.
Members of the series of bridging diphosphine clusters [Os3(CO)10(diphos)] where diphos = Ph2P(CH2nPPh2 [dppm (n = 1), dppe (n = 2), dppp (n = 3), or dppb (n = 4)] show interesting differences in their reactivity towards H+ and H2. Protonation leads to [Os3(μ-H)(CO)10(diphos)]+ with the hydrides bridging the same osmium atoms as the diphos ligand when diphos is dppe, dppp, or dppb, whereas the hydride and dppm bridge different edges in [Os39μ-H)(CO)10(dppm)]+. Hydrogenation of the 1,2-diphos compounds leads to [Os3(μ-H)2(CO)8(diphos)] (diphos = dppm, dppe, dppp) in good to excellent yield but the dppb analogue could not be made. Geometric and electronic factors affecting the ability to incorporate hydride ligands in these clusters are discussed.  相似文献   

11.
A new family of heteropolytungstate complexes (NH4)21[Ln(H2O)5{Ni(H2O)}2As4W40O140xH2O(Ln=Y, Ce, Pr, Nd, Sm, Eu, Gd) were prepared by the reaction of Na27[NaAs4W40O140]·60H2O with NiCl2·6H2O and Ln(NO3)3·xH2O at pH≈4.5. The crystal structures of (NH4)21[Gd(H2O)5{Ni(H2O)}2As4W40O140]·51H2O was determined by X-ray diffraction analysis and element analysis. The compound crystallizes in the monoclinic space group P21/n with a=19.754(3), b=24.298(4), c=39.350(6) Å, β=100.612(3)°, V=18564(5) Å3, Z=2, R1(wR2)=0.0544(0.0691). The central site S1 and two opposite sites S2 of the big cyclic ligand [As4W40O140]28− are occupied by one Ln3+and two Ni2+, respectively, each site supply four Od coordinating to metal ion, another one water molecule and other five water molecules coordinate, respectively, to Ni2+and Ln3+. Polyanion [Ln(H2O)5{Ni(H2O)}2As4W40O140]21− has C2v symmetry. IR and UV–vis spectra of [NaAs4W40O140]27− of the title compounds are discussed.  相似文献   

12.
Two polymeric complexes, [Cu2(btec)(phen)2]n·(H2O)n (1) and [Cd4(btec)2(phen)4(H2O)4]n (2) (H4btec=1,2,4,5-benzenetetracarboxylic acid; PHEN=1,10-phenanthroline), were synthesized by solvothermal reactions at 140 °C. Both complex 1 and 2 possess infinite double-chain structures, in which each Cu(II) center has a tetrahedral configuration and the Cd(II) centers adopt triangular prismatic and square-based pyramidal configurations simultaneously. The inter-chain face to face π–π interactions among the aromatic rings of phen and the hydrogen bond interactions between aqua molecules and carboxyl O atoms result in 3-D networks in the two complexes. The ESR spectra study of complex 1 shows that there is negligibly small long-range super-exchange interactions between the Cu(II) atoms via benzenecarboxylate bridging.  相似文献   

13.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

14.
The epoxidation of cyclopentene with hydrogen peroxide catalyzed by 12-heteropolyacids of molybdenum and tungsten (H3PMo12−nWnO40, n = 1–11), 12-tungstophosphoric acid and 12-molybdophosphoric acid combined with cetylpyridinium bromide as a phase transfer reagent was carried out in acetonitrile. Among 13 heteropolyacids investigated, catalyst of H3PMo6W6O40 showed the highest activity, giving a conversion of 60% and a selectivity of 95% in the epoxidation of cyclopentene. The fresh catalysts and the catalysts under reaction condition were characterized by UV–vis, FT-IR and 31P NMR spectroscopy, which has revealed that all of the molybdotungstophosphoric acids were degraded in the presence of hydrogen peroxide to form a considerable amount of phosphorus-containing species. The active species resulted from H3PMo6W6O40 are new kinds of phosphorus-containing species, which is different from {PO4[WO(O2)2]4}3−.  相似文献   

15.
氧原子转移试剂(OTR)Me3NO·2H2O和PhIO可明显地促进异核金属羰基簇合物SRuCO2(CO)9和SeRuCO2(CO)9对1-己烯的配位催化氢化和异构化反应. 催化剂的四面体簇核骨架在催化过程中保持不变. 其反应是一种缔合机理,通过OTR的作用经缔合和解离1分子配位羰基,形成配位不饱和簇核骨架,从而促进其对烯烃的催化氢化和异构化反应. 在甲醇溶液中,SRuCO2(CO)9催化1-乙烯氢化最佳条件为红压5. 0~6. 0MPa,温度60℃,[1-乙烯]/[SRuCO2·(CO)9]为200/1(摩尔比),[Me3NO·2H2O]/[SRuCO2(CO)9]=4~5(摩尔比).  相似文献   

16.
Two new coordination polymers, [Eu2(L)3(H2O)2]n 1 and {[Tb2(L)3(H2O)2]·H2O}n 2, (H2L=succinic acid) have been synthesized by the reaction of H2L with nitrate salts of Eu(III) or Tb(III) under hydrothermal conditions. The X-ray diffraction analysis reveals that the two complexes are constructed by L bridging the chains of edge-sharing EuO8(H2O) or TbO8(H2O) polyhedra to form 3D network structure. 1 and 2 possess different topological structures due to the difference in the conformations of L. The solid photoluminescence of 1 and 2 was also investigated in room temperature.  相似文献   

17.
X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ectron tretcher ccelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca2Ge0.8Cr0.2O4, Ba2Ge0.1Cr0.9O4, Sr2CrO4, Ca2(PO4)x(CrO4)1−xCl (x=0.25,0.5), Ca5(CrO4)3Cl, CrO3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl3, CrF3, Cr2O3, KCr(SO4)2 · 12H2O, CrO2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree–Fock method (Froese–Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.  相似文献   

18.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

19.
Synthesis of H3Ru33-CSEt)(CO)9, is accomplished by base-promoted attack of ethanethiol on H3Ru33-CBr)(CO)9. Thermolysis of this product under CO yields HRu3(CH2SEt)(CO)9. Reactions of H3Ru33-CSEt)(CO)9 with alkynes C2R2 form HRu333-EtSCCRCR)(CO)9 (R = Me or Ph) and Ru3 (cis-CR=CHR)(CSEt)(CO)9 (R = Me). The chemistry of H3Ru33-CSEt)(CO)9 differs significantly from that of the analogous ether derivative H3Ru33-COMe)(CO)9.  相似文献   

20.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号