首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiang J  Xia X  Jiang Y  Leung AW  Wang X  Xu J  Wang P  Yu H  Bai D  Xu C 《Ultrasonics》2011,51(3):390-395

Objective

The present study aims to investigate apoptosis of ovarian cancer cells induced by methylene blue (MB)-mediated sonodynamic therapy (SDT).

Methods

The MB concentration was kept constant at 100 μM and ovarian cancer HO-8910 cells were exposed to ultrasound therapy for 5 s with an intensity of 0.46 W/cm2. The cytotoxicity was investigated 24 h after MB-mediated sonodynamic action. Apoptosis was analyzed using a flow cytometer with Annexin V-FITC and propidium iodine (PI) staining as well as fluorescence microscopy with Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured by flow cytometer with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of MB-mediated SDT on HO-8910 cells after MB-mediated SDT was significantly higher than those of other treatments including ultrasound alone, MB alone and sham treatment. Flow cytometric analysis showed a significant increase in the early and late apoptotic cell populations by MB-mediated SDT of HO-8910 cells. Nuclear condensation and increased ROS levels were also found in HO-8910 cells treated by MB-mediated SDT.

Conclusions

Our findings demonstrated that MB-mediated sonodynamic action significantly induced apoptosis of HO-8910 cells and an increase in intracellular ROS level. This indicates that apoptosis is an important mechanism of cell death induced by MB-mediated SDT. Thus, MB-mediated SDT might be a potential therapeutic strategy for combating ovarian cancer.  相似文献   

2.
Wang X  Wang Y  Wang P  Cheng X  Liu Q 《Ultrasonics》2011,51(5):539-546

Objective

The purpose of this study was to evaluate sonodynamically induced anti-tumor effect of protoporphyrin IX (PPIX) in mice bearing hepatoma-22 (H-22) solid tumors, and the possible in vivo cell damage mechanism was also investigated.

Methods

The pharmacokinetics of PPIX was analyzed in plasma, skin, muscle and tumor of H-22 bearing mice. Tumors were irradiated with ultrasound (1.43 MHz, ISATA 3 W/cm2, 3 min) for three times at 8, 12 and 24 h after 5.0 mg/kg PPIX administration, respectively. The anti-tumor effects of sonodynamic therapy (SDT) were estimated by the tumor inhibition ratio (volume and weight). The bio-effects of SDT were evaluated by hematoxylin and eosin (H&E) staining, transmission electron microscope (TEM) observation, lipid peroxidation (LPO) measurement and anti-oxidative enzymes (glutathione peroxidase (GSH-PX), catalase (CAT) and superoxide dismutase (SOD)) assay.

Results

A significant anti-tumor effect was obtained by PPIX-mediated sonodynamic therapy (PPIX-SDT). At the fifteenth day after PPIX-SDT, the tumor growth and tumor weight inhibition ratios were 53.84% and 45.86%, respectively. In addition, the structure of tumor tissues and the anti-oxidative enzymes were obviously destroyed after SDT treatment.

Conclusions

A biochemical mechanism was involved in PPIX-SDT in vivo, and the free radicals produced by the synergistic treatment destroying the anti-oxidative system of tumor cells in vivo may play an important role in this action. Also, the thermal effect could not be excluded in inducing damage of cellular structures, like membrane disruption and chromatin condensation under current evaluation in this paper.  相似文献   

3.

Introduction

The aim of the study was to evaluate the effects of TPU together with DMSO on oxidative stress parameters after eccentric exercise.

Methods

Thirty and six animals were divided in control; eccentric exercise (EE); EE + saline gel 0.9%; EE + TPU 0.8 W/cm2; EE + DMSO gel; EE + TPU + DMSO gel and submitted to one 90-min downhill run (1.0 km h−1). TPU was used 2, 12, 24, 46 h after exercise session and 48 h after the animals were killed and the gastrocnemius muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, and antioxidants enzymes were analyzed.

Results

Showed that TPU and gel-DMSO improved muscle healing. Moreover, superoxide anion production, TBARS level and protein carbonyls levels, superoxide dismutase and catalase activity were all decreased in the group TPU plus gel-DMSO.

Discussion

Our results show that DMSO is effective in the reduction of the muscular lesion and in the oxidative stress after eccentric exercise only when used with TPU.  相似文献   

4.

Objectives

The present study aims to investigate apoptosis of human leukemia K562 cells induced by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (PpIX-SDT).

Methods

The uptakes of intracellular PpIX in K562 cells were detected by flow cytometry. The sub-cellular localization of PpIX was imaged by confocal microscope. The cytotoxic effect of PpIX-SDT was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium) assay. Apoptosis was evaluated by chromatin condensation with DAPI (4′-6-diamidino-2-phenylindole) staining, decrease of mitochondria membrane potential (MMP), re-distribution of Bax, and the expression changes of the key apoptosis-associated protein (Caspase-3 and polypeptide poly (ADP-robose) polymerase). The possible mechanism of SDT-induced apoptosis was investigated by detecting by intracellular ROS (reactive oxygen species) generation and effect of ROS scavenger-NAC (N-acetylcysteine) on SDT induced apoptosis.

Results

The intracellular PpIX increased quickly within 2 h after PpIX administration and PpIX mainly localized in the mitochondria. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound was significantly boosted. In addition, the ultrasound induced some extent of chromatin condensation and MMP loss was greatly enhanced by the presence of 2 μg/ml PpIX, where PpIX alone treatment showed no or only slight effect. Time-dependent Bax translocation, caspase-3 activation and PARP cleavage were detected in SDT treatment groups. Besides, intracellular ROS production was significantly enhanced after SDT, and the general ROS scavenger NAC could obviously alleviate the SDT-caused cell viability loss, MMP loss, Bax redistribution and nuclear changes.

Conclusions

These results indicated that PpIX-mediated sonodynamic action could induce apoptosis on K562 cells, and the intracellular ROS was involved in the PpIX-SDT induced apoptosis.  相似文献   

5.

Background

Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness.

Objective and method

Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness.

Results

An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%.

Conclusion

Images obtained here demonstrate that CWUR may be used as a powerful non-contact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%.  相似文献   

6.

Objectives

Curcumin, a natural pigment from the traditional Chinese herb, has shown promise as an efficient enhancer of ultrasound. The present study aims to investigate ultrasound-induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin in vitro.

Methods

Nasopharyngeal carcinoma cell line CNE2 cells were incubated by 10 μm curcumin and then were treated by ultrasound for 8 s at the intensity of 0.46 W/cm2. Cytotoxicity was evaluated using MTT assay and light microscopy. Mitochondrial damage was analyzed using a confocal laser scanning microcopy with Rhodamine 123 and ultrastructural changes were observed using a transmission electron microscopy (TEM).

Results

MTT assay showed that cytotoxicity induced by ultrasound treatment alone and curcumin treatment alone was 18.16 ± 2.37% and 24.93 ± 8.30%, respectively. The cytotoxicity induced by the combined treatment of ultrasound and curcumin significantly increased up to 86.67 ± 7.78%. TEM showed that microvillin disappearance, membrane blebbing, chromatin condensation, swollen mitochondria, and mitochondrial myelin-like body were observed in the cells treated by ultrasound and curcumin together. The significant collapse of mitochondrial membrane potential (MMP) was markedly observed in the CNE2 cells after the combined treatment of curcumin and ultrasound.

Conclusions

Our findings demonstrated that ultrasound sonication in the presence of curcumin significantly killed the CNE2 cells and induced ultrastructural damage and the dysfunction of mitochondria, suggesting that ultrasound treatment remarkably induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin.  相似文献   

7.

Objective

Fully automatic tissue characterization in intravascular ultrasound systems is still a challenge for the researchers. The present work aims to evaluate the feasibility of using the Higuchi fractal dimension of intravascular ultrasound radio frequency signals as a feature for tissue characterization.

Methods

Fractal dimension images are generated based on the radio frequency signals obtained using mechanically rotating 40 MHz intravascular ultrasound catheter (Atlantis SR Plus, Boston Scientific, USA) and compared with the corresponding correlation images.

Conclusion

An inverse relation between the fractal dimension images and the correlation images was revealed indicating that the hard or slow moving tissues in the correlation image usually have low fractal dimension and vice-versa. Thus, the present study suggests that fractal dimension images may be used as a feature for intravascular ultrasound tissue characterization and present better resolution then the correlation images.  相似文献   

8.
Xu J  Xia X  Leung AW  Xiang J  Jiang Y  Yu H  Bai D  Li X  Xu C 《Ultrasonics》2011,51(4):480-484
Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H22 cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm2 for 8 s. Cytotoxicity was investigated 24 h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM).The cytotoxicity of MPPa-mediated SDT on H22 cell line was 73.00 ± 3.42%, greater than ultrasound treatment alone (28.12 ± 5.19%) significantly while MPPa treatment alone had no significant effect on H22 cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H22 cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT.  相似文献   

9.

Objective and motivation

The goal of this work was to test experimentally that exposing air bubbles or ultrasound contrast agents in water to amplitude modulated wave allows control of inertial cavitation affected volume and hence could limit the undesirable bioeffects.

Methods

Focused transducer operating at the center frequency of 10 MHz and having about 65% fractional bandwidth was excited by 3 μs 8.5 and 11.5 MHz tone-bursts to produce 3 MHz envelope signal. The 3 MHz frequency was selected because it corresponds to the resonance frequency of the microbubbles used in the experiment. Another 5 MHz transducer was used as a receiver to produce B-mode image. Peak negative acoustic pressure was adjusted in the range from 0.5 to 3.5 MPa. The spectrum amplitudes obtained from the imaging of SonoVueTM contrast agent when using the envelope and a separate 3 MHz transducer were compared to determine their cross-section at the - 6 dB level.

Results

The conventional 3 MHz tone-burst excitation resulted in the region of interest (ROI) cross-section of 2.47 mm while amplitude modulated, dual-frequency excitation with difference frequency of 3 MHz produced cross-section equal to 1.2 mm.

Conclusion

These results corroborate our hypothesis that, in addition to the considerably higher penetration depth of dual-frequency excitation due to the lower attenuation at 3 MHz than that at 8.5 and 11.5 MHz, the sample volume of dual-frequency excitation is also smaller than that of linear 3-MHz method for more spatially confined destruction of microbubbles.  相似文献   

10.

Objective

The surface of biomaterials plays a critical role in determining bioactivity. The aim of this study was to evaluate the cell adhesion and proliferation of ADSCs on the surface of biomaterial which is modified with fibronectin or collagen.

Materials and methods

Adipose-derived stromal cells (ADSCs) were obtained from SD rats, expanded in culture, and seeded onto scaffold surface-modified with fibronectin or collagen. To characterize cellular attachment, cells were incubated on scaffold for 1 and 2 h and then counted the cells attached onto the scaffold. The MTT assay was chosen to evaluate the proliferation at days 1, 4, 7 and 14. After 7 d of culture, scanning electron microscope was chosen to observe cell morphology and attachment of ADSCs on the scaffolds.

Results

Attachment at 1 and 2 h of cells on scaffold modified with fibronectin was significantly greater than in control, but not with collagen. The MTT assay revealed that ADSCs proliferation tendency was nearly parallel to that in control. The scanning electron microscope (SEM) showed that ADSCs in experiment expanded thoroughly and excreted much extracellular materials.

Conclusions

Surface modification with fibronectin or collagen can enhance the attachment of cultured ADSCs on the scaffold, but it had not evident effect to proliferation.  相似文献   

11.

Purpose

To examine mesenchymal stem cell (MSC) labeling with micrometer-sized iron oxide particles (MPIOs) for magnetic resonance imaging (MRI)-based tracking and its application to monitoring articular cartilage regeneration.

Methods

Rabbit MSCs were labeled using commercial MPIOs. In vitro MRI was performed with gradient echo (GRE) and spin echo (SE) sequences at 3T and quantitatively characterized using line profile and region of interest analysis. Ex vivo MRI of hydrogel-encapsulated labeled MSCs implanted within a bovine knee was performed with spoiled GRE (SPGR) and T sequences. Fluorescence microscopy, labeling efficiency, and chondrogenesis of MPIO-labeled cells were also examined.

Results

MPIO labeling results in efficient contrast uptake and signal loss that can be visualized and quantitatively characterized via MRI. SPGR imaging of implanted cells results in ex vivo detection within native tissue, and T imaging is unaffected by the presence of labeled cells immediately following implantation. MPIO labeling does not affect quantitative glycosaminoglycan production during chondrogenesis, but iron aggregation hinders extracellular matrix visualization. This aggregation may result from excess unincorporated particles following labeling and is an issue that necessitates further investigation.

Conclusion

This study demonstrates the promise of MPIO labeling for monitoring cartilage regeneration and highlights its potential in the development of cell-based tissue engineering strategies.  相似文献   

12.

Background

High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the fabrication of conventional backing-layer structure, which requires a pitch (distance between the centers of two adjacent elements) of half wavelength in medium, is really a great challenge.

Objective and method

Here we present an alternative buffer-layer structure with a silicon lens for volumetric imaging. The requirement for the size of the pitch is less critical for this structure, making it possible to fabricate high-frequency (100 MHz) ultrasonic linear array transducers. Using silicon substrate also makes it possible to integrate the arrays with IC (Integrated Circuit). To compare with the conventional backing-layer structure, a finite element tool, COMSOL, is employed to investigate the performances of acoustic beam focusing, the influence of pitch size for the buffer-layer configuration, and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance.

Results

For a 100 MHz 10-element array of buffer-layer structure, the ultrasound beam in azimuth plane in water could be electronically focused to obtain a spatial resolution (a half-amplitude width) of 86 μm at the focal depth. When decreasing from half wavelength in silicon (42 μm) to half wavelength in water (7.5 μm), the pitch sizes weakly affect the focal resolution. The lateral spatial resolution is increased by 4.65% when the pitch size decreases from 42 μm to 7.5 μm. The crosstalk between adjacent elements at the central frequency is, respectively, −95 dB, −39.4 dB, and −60.5 dB for the 10-element buffer, 49-element buffer and 49-element backing arrays. Additionally, the electrical impedance magnitudes for each structure are, respectively, 4 kΩ, 26.4 kΩ, and 24.2 kΩ, which is consistent with calculation results using Krimholtz, Leedom, and Matthaei (KLM) model.

Conclusion

These results show that the buffer-layer configuration is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays dedicated to volumetric imaging.  相似文献   

13.
Shen CC  Su SY  Cheng CH  Yeh CK 《Ultrasonics》2012,52(1):25-32

Objective

The goal of this work is to examine the effects of pulse-inversion (PI) technique in combination with dual-frequency (DF) excitation method to separate the high-order nonlinear responses from microbubble contrast agents for improvement of image contrast. DF excitation method has been previously developed to induce the low-frequency ultrasound nonlinear responses from bubbles by using the composition of two high-frequency sinusoids (f1 and f2).

Motivation

Although the simple filtering was conventionally utilized to provide signal separation, the PI approach is better in the sense that it minimizes the mutual interferences among these high-order nonlinear responses in the presence of spectral overlap. The novelty of the work is that, in addition to the common PI summation, the PI subtraction was also applied in DF excitation method.

Methods

DF excitation pulses having an envelope frequency of 3 MHz (i.e., f1 = 8.5 MHz and f2 = 11.5 MHz) with pulse lengths of 3-10 μs and the pressure amplitudes from 0.5 to 1.5 MPa were used to interrogate the nonlinear responses of SonoVue™ microbubbles in the phantom experiments. The high-order nonlinear responses in the DF excitation were extracted for contrast imaging using PI summation for even-order nonlinear components or PI subtraction for odd-order nonlinear ones.

Results

Our results indicated that, as compared to the conventional filtering technique, the PI processing effectively increases the contrast-to-tissue ratio (CTR) of the third-order nonlinear response at 5.5 MHz and the fourth-order nonlinear response at 6 MHz by 2-5 dB. For these high-order nonlinear components, the CTR increase varies with the transmission pressures from 0.5 to 1.5 MPa due to the microbubbles’ displacement induced by the radiation force of DF excitation.

Conclusions

For DF excitation technique, the PI processing can help to extract either the odd-order or the even-order nonlinear components for higher CTR estimates.  相似文献   

14.

Introduction

Elastic modulus estimation may be an important clinical criterion, as it seems to affect such eye parameters as intraocular pressure, ocular pulsation, blood flow, effect of topical medications, and post-refractive surgery complications. The purpose of this study was to examine the differences in elasticity in the ocular axial length, posterior wall thickness (posterior pole), and retina-choroid thickness under normal and aged-related macular degeneration (AMD) conditions in the human eye by directly estimating the elastic modulus with sequential and noninvasive ultrasound image processing.

Materials and Methods

In this study, 25 healthy subjects and 20 patients with non-neovascular AMD participated in the experiment. The deformation of the ocular axial length, posterior wall thickness and retina-choroid complex thickness was captured using high-resolution ultrasonography before and after loading. The B-mode (20 MHz) and A-mode (8 MHz) frames were obtained and processed with an echo tracking technique. The elastic modulus was estimated using changes in ocular axial length, posterior wall thickness and retina-choroid complex thickness and with applied stress measurements.

Results

There was a significant difference (p < 0.05) in the ocular axial length elastic modulus between the AMD and healthy subjects (AMD patients: 95.165 ± 26.431 kPa, vs. healthy subjects: 49.539 ± 25.867 kPa). Moreover, there was a statistically significant difference (p < 0.05) in the posterior wall thickness elastic modulus between AMD patients and healthy subjects (AMD patients: 50.519 ± 12.295 kPa, vs. healthy subjects: 20.519 ± 11.827 kPa). However, no statistically significant difference (p-value > 0.05) was found in the retina-choroid complex elastic modulus between the two groups (AMD patients: 20.134 ± 3.898 kPa, vs. healthy subjects: 15.630 ± 4.250 kPa).

Conclusion

Although the results were obtained examining a relatively low number of patients, it would appear that noninvasive ultrasound estimation of the local elastic moduli of ocular axial length and posterior wall thickness is suited to aid in detection of the non-exudative AMD thus manifesting its potential as a screening tool in symptom-free individuals.  相似文献   

15.

Objectives

To test the effect of pulsed (Q-switched) and continuous wave (CW) laser light at wavelength of 532 nm on the viability of free-living stationary phase bacteria with and without gentamicin (an antibiotic) treatment.

Methods

Free living stationary phase gram negative bacteria (Pseudomonas aeruginosa strain PAO1) was immersed in Luria Broth (LB) solution and exposed to Q-switched and CW lasers with and without the addition of the antibiotic gentamicin. Cell viability was determined at different time points.

Results

Laser treatment alone did not reduce cell viability compared to untreated control and the gentamicin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamicin treatment, however, resulted in a synergistic effect and viability was reduced by 8 logs for P. aeruginosa PAO1.

Conclusions

Combination of laser light with gentamicin shows an improved efficacy against P. aeruginosa.  相似文献   

16.

Purpose

This study aimed to develop a 0.014-in., anti-solenoid loop (ASL) magnetic resonance imaging guidewire (MRIG) for intravascular 3.0-T MR imaging.

Materials and Methods

We first designed the ASL MRIG, which was made of a coaxial cable with its extended inner conductor and outer conductor connected to two micro-anti-solenoids. We then evaluated in vitro the functionality of the ASL MRIG by imaging a “vessel” in a phantom and achieving signal-to-noise ratio (SNR) and SNR contour map of the new 0.014-in. ASL MRIG. Subsequently, we validated in vivo the feasibility of using the ASL MRIG to generate intravenous 3.0-T MR images of parallel iliofemoral arteries of near-human-sized living pigs.

Results

In vitro evaluation showed that the 0.014-in. ASL MRIG functioned well as a receiver coil with the 3.0-T MR scanner, clearly displaying the vessel wall with even distribution of MR signals and SNR contours from the ASL MRIG. Of the in vivo studies, the new ASL MRIG enabled us to successfully generate intravenous 3.0-T MR imaging of the iliofemoral arteries.

Conclusion

This study confirms that it is possible to build such small-looped MRIG at 0.014 in. for intravascular 3.0-T MR imaging.  相似文献   

17.

Purpose

The purpose of our study was to compare diffusion-weighted MR imaging (DWI) with conventional dynamic MRI in terms of the assessment of small intrahepatic metastases from hepatocellular carcinoma (HCC).

Materials and Methods

In 24 patients with multifocal, small (≤2 cm) intrahepatic metastatic foci of advanced HCC, a total of 134 lesions (≤1 cm, n=81; >1 cm, n=53) were subjected to a comparative analysis of hepatic MRI including static and gadopentetate dimeglumine-enhanced dynamic imaging, and DWI using a single-shot spin-echo echo-planar MRI (b values=50, 400 and 800 s/mm2), by two independent reviewers.

Results

A larger number of the lesions were detected and diagnosed as intrahepatic metastases on DWI [Reviewer 1, 121 (90%); Reviewer 2, 117 (87%)] than on dynamic imaging [Reviewer 1, 107 (80%); Reviewer 2, 105 (78%)] (P<.05). For the 81 smaller lesions (≤1 cm), DWI was able to detect more lesions than dynamic imaging [Reviewer 1, 68 (84%) vs. 56 (69%), P=.008; Reviewer 2, 65 (80%) vs. 55 (68%), P=.031], but there was no statistically significant difference between the two image sets for larger (>1 cm) lesions.

Conclusion

Due to its higher detection rate of subcentimeter lesions, DWI could be considered complementary to dynamic MRI in the diagnosis of intrahepatic metastases of HCCs.  相似文献   

18.

Purpose

Real-time tissue elastography, a qualitative elastography method, has shown promising results in the diagnostic work up of thyroid nodules. However, to our knowledge no study has evaluated a quantitative elastography method in the thyroid gland. The present study is a feasibility study evaluating Acoustic Radiation Force Impulse-Imaging, a novel quantitative elastography method in the thyroid gland.

Methods

ARFI-imaging involves the mechanical excitation of tissue using short-duration acoustic pulses to generate localized displacements in tissue. The displacements induce a lateral shear-wave propagation which is tracked using multiple laterally positioned ultrasound “tracking“ beams. Inclusion criteria were: thyroid nodules ?1 cm, non-functioning or hypo-functioning on radionuclide scanning, and cytological/histological assessment of thyroid nodule as reference method. All patients received conventional ultrasound, and examination of the thyroid gland including Power Doppler Ultrasound using a 9 MHz linear transducer, in addition real-time elastography (RTE) was performed at 9 MHz frequency and ARFI-imaging was performed at 4 MHz using Siemens (ACUSON S2000) B-mode-ARFI combination transducer.

Results

Sixty nodules in 55 patients were analyzed. Three nodules were papillary carcinoma. The stiffer the tissue the faster the shear wave propagates. The results obtained indicated that the shear wave velocity in thyroid lobes ranged between 0.5 and 4.9 m/s. The median velocity of ARFI-imaging in the healthy nodule-free thyroid gland, as well as in benign and malignant thyroid nodules was 1.98 m/s (range: 1.20-3.63 m/s), 2.02 m/s (range: 0.92-3.97 m/s), and 4.30 m/s (range: 2.40-4.50 m/s), respectively. While no significant difference in median velocity was found between healthy thyroid tissue and benign thyroid nodules, a significant difference was found between malignant thyroid nodules on the one hand and healthy thyroid tissue (p = 0.018) or benign thyroid nodules (p = 0.014) on the other hand. Specificity of ARFI-imaging for the differentiation of benign and malignant thyroid nodules was comparable with RTE (91-95%).

Conclusions

ARFI can be performed in the thyroid tissue with reliable results.  相似文献   

19.

Purpose

Sono-Photodynamic therapy (SPDT) is an alternative therapy which claims to enhance the anti-cancer effects by combining sonodynamic therapy (SDT) with photodynamic therapy (PDT). In the present study, we investigated the effects of chlorin e6 (Ce6) mediated SPDT on migration, apoptosis and autophagy in mouse mammary 4T1 cancer cells, and its underlying mechanisms.

Materials

Cell migration was determined by wound healing assay. Apoptosis was analyzed using annexin V-PE/7-ADD staining as well as Hoechst 33342 staining. Changes of mitochondria membrane potential (MMP) was evaluated by flow cytometry. Formation of acidic vesicular organelles (AVOs) during autophagy was observed with fluorescence microscope by MDC staining. Immunofluorescence assays were performed to detect the co-localization of LC3 and Lamp2. Western blotting was employed to analyze the activity of the apoptosis related proteins Caspase-3, PARP, Bax and Bcl-2, as well as the autophagy associated processing of LC3-I to LC3-II and Beclin-1 expression.

Results

Ce6 mediated SPDT further enhanced cell migration inhibition, significantly triggered cell apoptosis, nuclear condensation and MMP drop. Cleaved Caspase-3 and PARP increased dramatically after Ce6-SPDT, accompanied by decreased Bcl-2 expression, while the expression of Bax remained stable. Additionally, AVOs formation, co-localization of LC3 and Lamp2 occurred following Ce6-SPDT and simultaneously accompanied by LC3-II processing and increased Beclin-1 expression.

Conclusions

Ce6-SPDT could enhance cell migration inhibition, and induce mitochondria-dependent apoptosis as well as autophagy in 4T1 cells.  相似文献   

20.

Background

Permanent prostate brachytherapy (PPB) is a common treatment for early stage prostate cancer. While the modern approach using trans-rectal ultrasound guidance has demonstrated excellent outcome, the efficacy of PPB depends on achieving complete radiation dose coverage of the prostate by obtaining a proper radiation source (seed) distribution. Currently, brachytherapy seed placement is guided by trans-rectal ultrasound imaging and fluoroscopy. A significant percentage of seeds are not detected by trans-rectal ultrasound because certain seed orientations are invisible making accurate intra-operative feedback of radiation dosimetry very difficult, if not impossible. Therefore, intra-operative correction of suboptimal seed distributions cannot easily be done with current methods. Vibro-acoustography (VA) is an imaging modality that is capable of imaging solids at any orientation, and the resulting images are speckle free.

Objective and methods

The purpose of this study is to compare the capabilities of VA and pulse-echo ultrasound in imaging PPB seeds at various angles and show the sensitivity of detection to seed orientation. In the VA experiment, two intersecting ultrasound beams driven at f1 = 3.00 MHz and f2 = 3.020 MHz respectively were focused on the seeds attached to a latex membrane while the amplitude of the acoustic emission produced at the difference frequency 20 kHz was detected by a low frequency hydrophone.

Results

Finite element simulations and results of experiments conducted under well-controlled conditions in a water tank on a series of seeds indicate that the seeds can be detected at any orientation with VA, whereas pulse-echo ultrasound is very sensitive to the seed orientation.

Conclusion

It is concluded that vibro-acoustography is superior to pulse-echo ultrasound for detection of PPB seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号