共查询到20条相似文献,搜索用时 15 毫秒
1.
以二维钢/气体系声子晶体为模型,采用平面波法研究了圆柱正方及六角晶格中心添加插入体的对称性及取向与带隙的关系,给出了四方、六方、八方及圆柱插入体结构的带隙分布图及带隙随柱体取向的变化关系图.发现在低填充率条件下,插入体的截面形状与晶格类型相同时最有利于能带简并态的分离而获得带隙,但填充率较高时,采用高对称性的插入体可以获得最宽的带隙.正方晶格中心插入体取向对带隙的影响要比在六角晶格中更为显著.对四方柱正方晶格声子晶体的研究表明,仅旋转原柱体要比在其中心插入柱体后旋转更容易获得低频宽带隙,单独运用添加柱体或旋转非圆柱体来降低晶格对称性以获取低频带隙的方法要比同时使用两种方法效果更好.此外,从机理上对计算结果进行了解释. 相似文献
2.
We present a detailed theoretical study on the acoustic band structure of two-dimensional(2D)phononic crystal.The 2D phononic crystal with parallelogram lattice structure is considered to be formed by rigid solid rods embedded in air.For the circular rods,some of the extrema of the acoustic bands appear in the usual high-symmetry points and,in contrast,we find that some of them are located in other specific lines.For the case of elliptic rods,our results indicate that it is necessary to study the whole first Brillouin zone to obtain rightly the band structure and corresponding band gaps.Furthermore,we evaluate the first and second band gaps using the plane wave expansion method and find that these gaps can be tuned by adjusting the side lengths ratio R,inclined angleθand filling fraction F of the parallelogram lattice with circular rods.The results show that the largest value of the first band gap appears atθ=90°and F=0.7854.In contrast,the largest value of the second band gap is atθ=60°and F=0.9068.Our results indicate that the improvement of matching degree between scatterers and lattice pattern,rather than the reduction of structural symmetry,is mainly responsible for the enhancement of the band gaps in the 2D phononic crystal. 相似文献
3.
Yang Fan Li Fei Meng Shuo Li Baohua Jia Shiwei Zhou Xiaodong Huang 《Physics letters. A》2018,382(10):679-684
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps. 相似文献
4.
We propose hybrid phononic-crystal plates which are composed of periodic stepped pillars and periodic holes to lower and widen acoustic band gaps. The acoustic waves scattered simultaneously by the pillars and holes in a relevant frequency range can generate low and wide acoustic forbidden bands. We introduce an alternative double-sided arrangement of the periodic stepped pillars for an enlarged pillars’ head diameter in the hybrid structure and optimize the hole diameter to further lower and widen the acoustic band gaps. The lowering and widening effects are simultaneously achieved by reducing the frequencies of locally resonant pillar modes and prohibiting suitable frequency bands of propagating plate modes. 相似文献
5.
Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a one-dimensional periodic plate by using the method of supercell plane-wave expansion. The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands. In order to reveal the relationship between the band pinning and the anti-symmetry, the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures. Further, the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map, and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra. The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates, and by introducing different types of breakages, more ABGs or narrow pass bands will appear, which is meaningful in band gap engineering. 相似文献
6.
A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was
expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation
of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the
same one-dimensional phononic crystals computed with the wavelet method and the well-known plane wave expansion (PWE) method
are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs
of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible
for efficient band gap computation of more complex phononic structures.
Supported by the National Natural Science Foundation of China (Grant No. 10632020) 相似文献
7.
Investigation of a silicon-based one-dimensional phononic crystal plate via the super-cell plane wave expansion method 下载免费PDF全文
The super-cell plane wave expansion method is employed to
calculate band structures for the design of a silicon-based
one-dimensional phononic crystal plate with large absolute forbidden
bands. In this method, a low impedance medium is introduced to
replace the free stress boundary, which largely reduces the
computational complexity. The dependence of band gaps on structural
parameters is investigated in detail. To prove the validity of the
super-cell plane wave expansion, the transmitted power spectra of the
Lamb wave are calculated by using a finite element method. With the
detailed computation, the band-gap of a one-dimensional plate can be
designed as required with appropriate structural parameters, which
provides a guide to the fabrication of a Lamb wave phononic crystal. 相似文献
8.
9.
提出了一种新型的非对称性散射体的二维六角晶格光子晶体结构–-太极形介质柱光子晶体. 利用平面波展开法从理论研究这种光子晶体结构的能带特性以及结构参数对完全禁带的影响. 研究表明:散射体对称性的打破, TE模和TM模能带宽度和数目都会有所增加, 有益于获得更宽的完全禁带以及更多条完全禁带.通过参数优化, 发现在ε = 17, R=0.38 μm, r=0.36R, θ = 0° 时, 获得最大完全带隙宽度0.0541(ωa/2πc); 在ε = 16, R=0.44, r=0.2R, θ = 0°时, 光子晶体完全带隙数目最多达到8条.
关键词:
光子晶体
禁带
平面波展开 相似文献
10.
Yongsen LiJiujiu Chen Xu HanKan Huang Jianguo Peng 《Physica B: Condensed Matter》2012,407(8):1191-1195
Phononic band structure with periodic elliptic inclusions for the square lattice is investigated based on the plane wave expansion method. The numerical results show the systems composed of tungsten (W) elliptic rods embedded in a silicon (Si) matrix can exhibit a larger complete band gap than the conventional circular phononic crystal (PC) slabs. The phononic band structure of the plate-mode waves and the width of the first complete band gap can be tuned by varying the ratio of the minor axis and the major axis, the orientation angle of the elliptic rods and the thickness of the PC slabs. We also study the band structure of plate-mode waves propagating in two-dimensional (2D) slabs with periodic elliptic inclusions coated on uniform substrate. 相似文献
11.
介绍了平面波算法计算声子晶体带结构的分析过程,计算了二维双组分液相体系声子晶体的带结构.结果表明,四氯化碳/水银体系比水银/四氯化碳体系更容易产生带隙.随分散相填充分数f的增加,四氯化碳/水银体系声子晶体带隙宽度ΔΩ先增加,后减小,当f=0229时,有最大值ΔΩ=0549;水银/四氯化碳体系的带隙宽度一直增大,当f=0554时,有最大值ΔΩ=0515;f一定时,改变分散相单元的几何尺寸和点阵常数,带隙宽度ΔΩ保持不变.
关键词:
声子晶体
声子带隙
平面波算法
带结构 相似文献
12.
本文提出了一种新型局域共振复合单元声子晶体结构, 并结合有限元方法对结构的带隙机理及低频共振带隙特性进行了分析和研究. 共振带隙产生的频率位置由所对应的局域共振模态的固有频率决定, 并且带隙宽度与局域共振模态的品质因子及其与基体之间的耦合作用强度有关. 采用局域共振复合单元结构可以实现声子晶体的多重共振, 在低频范围能打开多条共振带隙, 但受到共振单元排列方式的的影响. 由于纵向和横向局域共振模态的简并, 复合单元结构能在200 Hz以下的低频范围打开超过60%宽度的共振带隙, 最低带隙频率低至18 Hz. 这为声子晶体结构获得低频、超低频带隙提供了一种有效的方法.
关键词:
局域共振
低频带隙
复合单元
声子晶体 相似文献
13.
14.
15.
《Physics letters. A》2014,378(30-31):2285-2289
We propose a compressible soft periodic structure to study the real time control ability or tunability of longitudinal elastic waves in it by applying a mechanical biasing field. The simple and nonlinear neo-Hookean material model for compressible elastic materials is employed to theoretically investigate the mechanically tunable properties of band structures. The effective acoustic impedance difference is first introduced in the Letter which seems to be the dominating parameter in tuning the acoustic band gaps. 相似文献
16.
B. Djafari-Rouhani J.O. Vasseur A.C. Hladky-Hennion P. Deymier F. Duval B. Dubus Y. Pennec 《Photonics and Nanostructures》2008,6(1):32-VII
Using the finite element method (FEM), we investigate the existence of absolute band gaps and localized modes associated with a guide in thin films of phononic crystals. Two different structures based on two-dimensional (2D) phononic crystals are considered, namely a free standing plate and a plate deposited on a silicon substrate. The 2D phononic crystal is constituted by a square array of cylindrical holes drilled in an active piezoelectric PZT5A matrix. We demonstrate the existence of absolute band gap in the band structure of the phononic crystal plate and, then, the possibility of guided modes inside a linear defect created by removing one row of air holes. In the case of the supported plate, we show the existence of an absolute forbidden band in the plate modes when the thickness of the substrate significantly exceeds the plate thickness. 相似文献
17.
Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures 下载免费PDF全文
The complete flexural vibration band gaps are studied in the thin plates
with two-dimensional binary locally resonant structures, i.e. the composite
plate consisting of soft rubber cylindrical inclusions periodically placed
in a host material. Numerical simulations show that the low-frequency gaps
of flexural wave exist in the thin plates. The width of the first gap
decreases monotonically as the matrix density increases. The frequency
response of the finite periodic thin plates is simulated by the finite
element method, which provides attenuations of over 20dB in the frequency
range of the band gaps. The findings will be significant in the application
of phononic crystals. 相似文献
18.
19.
声子晶体管路的带隙特性,可以实现管路系统在特定频率下的噪声控制.利用二维模态匹配法推导出单个内插扩张室元胞的传递矩阵,结合Bloch定理,得到声子晶体管路的能带结构计算方法;验证了二维方法在计算能带结构时的准确性.研究发现,内插扩张室声子晶体管路存在布拉格带隙和局域共振带隙.进一步研究了晶格常数以及内插管长度对能带结构的影响,结果表明,晶格常数主要控制布拉格带隙,而内插管长度对局域共振带隙有较大的影响,并研究了两种参数变化下的带隙耦合.研究结果可以为管路降噪设计提供新的思路. 相似文献
20.
Zheng-Hua Tang Zheng-Sheng Jiang Tao Chen Chun-Zhi Jiang Da-Jun Lei Jian-Quan Huang Feng Qiu Min Yao Xiao-Yi Huang 《Physics letters. A》2018,382(2-3):106-110
Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices. 相似文献