首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five zinc (II) complexes (1-5) with 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.  相似文献   

2.
This mini review gives some highlights of the work recently carried out in our research group in Dublin on the developments of lanthanide luminescent devices, where the future goal is to produce devices that can operate as sensors. A few examples demonstrate our design principles for targeting both anion and cations that are of biological or pharmaceutical relevance, where the recognition occurs in aqueous competitive media. We also discuss the possibility of developing mixed f-d metal complexes and conjugates that can be employed as novel supramolecular architectures.  相似文献   

3.
We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac)2CrIII(μ-ox)LnIII(HBpz3)2] (Cr(ox)Ln:acac=acetylacetonate, ox2−=oxalate, HBpz3=hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac)2(ox)] and [(HBpz3)2Ln(μ-ox)Ln(HBpz3)2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the 2E state of Cr(III) moiety. At room temperature no 2E-4A2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the 2E-4A2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.  相似文献   

4.
Reactive Al/OH(aq) interface was studied and used as a source of chemical energy in the generation of chemiluminescence. The observed extrinsic lyoluminescence emission during dissolution of aluminum in an alkaline Tb(III) or Eu(III) chelate solution was clearly based either on 5D47FJ radiative transitions of Tb(III) or 5D07FJ transitions of Eu(III). In this process, these chelates were chemically excited via analogous one-electron redox pathways as known from extrinsic lyoluminescence of irradiated, electrolytically- or additively-colored alkali halides, and from hot electron-induced electrochemiluminescence. Calibration curves of Tb(III) chelates, peroxodisulfate and hydroxide ions were linear over several orders of magnitude of concentration. In addition, the method seems to be suitable for relatively rough chemical measurements of the thicknesses of aluminum oxide films free from trapped charges.  相似文献   

5.
Complexation and photophysical properties of complexes of lanthanide ions, Ln(III), with diethyl(phthalimidomethyl)phosphonate ligand, DPIP, were studied. Interactions between Ln(III) and DPIP were investigated using Nd(III) absorption and Eu(III) and Tb(III) luminescence (emission and excitation) spectra, recorded in acetonitrile solution containing different counter ions (NO3-, Cl- and ClO4-). Results of the absorption spectroscopy have shown that counter ions play a significant role in the complexation of Ln(III)/DPIP complexes. Studies of luminescence spectra of Eu(III) and Tb(III) ions proved that the formation of Ln(III)/DPIP complexes of stoichiometry Ln:L=1:3 is preferred in solution. Based on the results of elemental analysis, Nd(III) absorption spectra and IR and NMR data, it was shown that the DPIP ligand binds Ln(III) ions via oxygen from phosphoryl group, forming complexes of a general formula Ln(DPIP)3(NO3)3·H2O, in which the NO3- ions are coordinated with the metal ion as bidentate ligands. Luminescent properties and energy transfer, from the ligand to Ln(III) ions in the complexes formed, were studied based on the emission and excitation spectra of Eu(III) and Tb(III). Their luminescent lifetimes and emission quantum yields were also measured.  相似文献   

6.
Four Ln3+ coordination complexes with the formulas [Ln(p-toluylate)2(Ac)(H2O)]n (Ln=Ho 1, Yb 2) and {[Ln2(OOCCH2CH2COO)3(H2O)4]·6H2O}n (Ln=Ho 3, Yb 4) were synthesized hydrothermally. Their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isomorphic and form infinite 2D network structures comprising p-toluylate and acetate (Ac) moieties. Complexes 3 and 4 are also isomorphic and possess infinite 2D structures in which succinate acts as bridging ligands that are connected to a 3D hydrogen bonding network by O–H…O hydrogen bonds. Solid-state IR and UV-Vis-NIR spectra, excitation and emission spectra were determined for the four complexes at room temperature. Complexes 1 and 2 exhibit characteristic NIR emission bands of Ln3+ ions but these are shifted and split relative to the theoretical positions. This is also evident for their UV-Vis-NIR spectra. The influence of ligands on enhancing the NIR luminescence of Ln3+ ions in complexes is discussed.  相似文献   

7.
Tetranuclear europium(III) complexes, [Eu4(μ-O)(L1)10] (L1=2-hydroxy-4-octyloxybenzophenone,1) and [Eu4(μ-O)(L2)10] (L2=2-hydroxy-4-dodecyloxybenzophenone,2) were synthesized by the reaction of lanthanide nitrates with L1 or L2 in the presence of triethylamine in methanol. The photosensitized emission bands of the both Eu(III) complexes in THF-d8 were observed around 579, 590, 615, 653, and 699 nm by the excitation of the ligands at 380 nm, whereas the emission from the mononuclear complex 3 containing ethanol molecules was almost quenched. The emission efficiencies were determined to be 3.1±0.1% for 1 and 3.9±0.1% for 2, respectively. The differential scanning calorimetry (DSC) measurements demonstrated that the decomposition points of 1 and 2 were 309 °C and 320 °C, respectively, indicating high thermostability of these complexes compared to the mononuclear Eu(III) complex 3 (250 °C). New strategy for designing stable rare earth compounds giving strong emission would be emphasized by introducing polynuclear complexes. Polynuclear complexes should open a wide range of molecular design for photosensitized luminescence and thermal stability.  相似文献   

8.
Two novel ternary rare earth perchlorate complexes had been synthesized by using bis(benzoylmethyl) sulfoxide as first ligand (L=C6H5COCH2SOCH2COC6H5), salicylic acid as second ligand (L=C6H4OHCOO). The compounds were characterized by elemental analysis, TG-DSC and molar conductivities in DMF solution. The composition was suggested as [REL5L′](ClO4)2·nH2O (RE=Tb, Dy; n=6, 8 ). Based on IR, 1HNMR and UV spectra, it showed that the first ligand, bis(benzoylmethyl) sulfoxide (L), bonded with Tb(III), Dy(III) ions by the oxygen atom of sulfinyl group. The second ligand, salicylic acid group (L′), not only bonded with RE(III) ions by one oxygen atom of carboxyl group but also bonded with RE(III) ions by oxygen atom of phenolic hydroxyl group. In bis(benzoylmethyl) sulfoxide system, fluorescent spectra of the complexes showed that the luminescence of Tb(III), Dy(III) ions was enhanced by the second ligand salicylic acid. The ternary complexes had stronger fluorescence than the binary ones where only bis(benzoylmethyl) sulfoxide acted as ligand. Phosphorescent spectra of the two ligands indicated that the coordination of salicylic acid resulted in the matching extent increasing between the triplet state of ligand and excited state of the rare earths. The relationship between fluorescence lifetime and fluorescence intensity was also discussed.  相似文献   

9.
Three types of europium complexes were synthesized by introducing benzoylacetone as the first ligand and 1, 10-phenanthroline, triphenylphosphine oxide, 2,2'-bipyridyl as the second ligand, respectively. The properties of above materials were characterized by infrared absorption spectra, UV-Vis absorption spectra and fluorescence spectra. Then, it was discussed that the different second ligands of europium complexes can affect their luminescence properties, and their intramolecular energy transfer models had been set up. The results indicated that ligands and complexes have a strong absorption of UV light and the three types of europium complexes exhibit characteristic luminescence of europium ion when excited by UV light. In addition, it is suggested that the fluorescence yield of europium complexes mostly depend on both the energy difference between the second ligand and the Eu3+ ion and the energy difference between the second ligand and the first ligand.  相似文献   

10.
In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd2O3. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles.As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties.Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.  相似文献   

11.
Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2′-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.  相似文献   

12.
The oxidation of allyl alcohol by diperiodatoargentate(III) (DPA) is carried out both in the absence and presence of ruthenium(III) catalyst in alkaline medium at 298 K and a constant ionic strength of 1.1 mol dm?3 was studied spectrophotometrically. The oxidation products in both the cases were acrolein and Ag(I), identified by spectral studies. The stoichiometry is same in both the cases, that is, [AA]/[DPA] = 1:1. The reaction shows first order in [DPA] and has less than unit order dependence each in both [AA] and [Alkali] and retarding effect of [IO] in both the catalysed and uncatalysed cases. The order in [Ru(III)] is unity. The active species of DPA is understood to be as monoperiodatoargentate(III) (MPA) in both the cases. The uncatalysed reaction in alkaline medium has been shown to proceed via a MPA–allyl alcohol complex, which decomposes in a rate determining step to give the products. In catalysed reaction, it has been shown to proceed via a Ru(III)‐allyl alcohol complex, which further reacts with one molecule of MPA in a rate determining step to give the products. The reaction constants involved in the different steps of the mechanisms were calculated for both reactions. The catalytic constant (Kc) was also calculated for catalysed reaction at different temperatures. The activation parameters with respect to slow step of the mechanisms were computed and discussed for both the cases. The thermodynamic quantities were also determined for both reactions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Optimized structures and photophysical properties of mer- and fac-Alq3 have been generated by using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Investigating the substitution effect in the Alq3 derivatives, the role of the electron-donating (CH3- and NH2-) and electron-withdrawing (F-, CN-, NO2- and phenyl-) groups with 2- to 7-substitution have been analyzed. According to the calculation results, the 4- and 5- substituted Alq3 exhibit an apparent spectral shift relative to the non-substituted Alq3. The HOMO, LUMO, Eg (the energy gap between LUMO and HOMO), (maximum absorption wavelength) and f (the relative oscillator strength) of mer-Alq3 with the 4- or 5-phenyl substitution on the quinoline ligand in the ground electronic state were calculated by using the DFT/B3LYP/6-31G(d) and TD-DFT methods. 5-phenyl substituted mer-Alq3 with an electron-donating substituent showed an increase in the π-delocalization as compared to the 4-phenyl substituted mer-Alq3 derivatives. Similarly, 4-phenyl substituted mer-Alq3 with electron-withdrawing substituents also exhibits increased π-delocalization in the pyridine ring as compared to the non-substituted Alq3. Replacing the CH group at the 4, 5 and 4,5 positions of the quinoline ligand of mer-Alq3 with the aza group (nitrogen atom) gives three Alq3 analogous: AlX3, Al(NQ)3 and Al(NX)3; the calculated energy gap Eg of these derivatives decreases in the order Al(NQ)3>Al(NX)3>AX3. Four quinoline with group III metals Mq3 complexes were investigated for the photophysical properties; the calculated energy gap Eg decreases in the order Tlq3>Inq3>Gaq3>Alq3. The photophysical properties of 4-hydroxy-8-methyl-1,5-naphthyridine (mND) chelated with group III metals (MmND3 complexes) were investigated also; their calculated Eg have the opposite order as those of Mq3 complexes.  相似文献   

14.
利用最弱受约束电子势模型理论计算了二价钪离子和二价钇离子的能级间跃迁几率和振子强度的数值. 二价钪离子的计算结果与美国国家标准技术研究院(NIST)所给出的可接受值吻合良好. 二价钇离子的计算结果也与现有的其他理论方法的计算结果十分接近.  相似文献   

15.
The complexes of cerium(III) and neodymium(III) were synthesized by reaction of the respective inorganic salts with 5‐aminoorotic acid (H4L) in amounts equal to the metal:ligand molar ratio of 1:3. The structures of the final complexes were determined by means of spectral (IR, Raman, 1H NMR and 13C NMR) and elemental analysis. Significant differences in the IR spectra of the complexes were observed as compared to the spectrum of the ligand. A comparative analysis of the Raman spectra of the complexes with that of the free H4L allowed a straightforward assignment of the vibrations of the ligand groups involved in coordination. The geometry of H4L was computed and optimized for the first time with the Gaussian03 program using the B3PW91/6‐311++G**, B3PW91/LANL2DZ, B3LYP/6‐311++G** and B3LYP/LANL2DZ methods. The experimental IR and Raman bands of the ligand were assigned to normal modes on the basis of DFT calculations. The vibrational analysis performed for the studied species, H4L and its complexes, helped to explain the vibrational behavior of the ligand vibrational modes sensitive to interaction with the lanthanides. The vibrational study gave evidence for the coordination mode of the ligand to lanthanide ions and was in agreement with the other theoretical prediction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The fluorescence system of enoxacin-Tb3+-sodium dodecylbenzene sulfonate (SDBS) was investigated in this paper. The experiments indicated that the fluorescence intensity of Tb3+-SDBS was greatly enhanced by enoxacin. Accordingly, a sensitive fluorimetric method for determining enoxacin was established. The fluorescence intensity was measured by a 1-cm quartz cell with an excitation wavelength of 290 nm and an emission wavelength of 545 nm. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of enoxacin in the range of 5.0×10−9 to 2.0×10−6 mol L−1, its correlation coefficient was 0.9992 and the detection limit (S/N=3) was 2.8×10−9 mol L−1. The presented method was used to determine enoxacin in real pharmaceutical samples. The luminescence mechanism was also discussed in detail. In the fluorescence system of enoxacin-Tb3+-SDBS, SDBS not only acted as the surfactant but also acted as the energy donor.  相似文献   

17.
A new nanostructured Bi(III) supramolecular compound, {[Bi2(4,4′-Hbipy)1.678(4,4′-Hbipy)0.322(μ-I)2I5.678] (4,4′-bipy)} (1), 4,4′-bipy = 4,4′-bipyridine} was synthesized by a sonochemical method. The nano-structure of 1 was investigated using scanning electron microscopy, powder X-ray powder diffraction (XRD), IR spectroscopy and elemental analysis, and the crystal structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of bulk compound 1 and of nano sized particles was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Bi2O3 and BiI3 nano-structures were obtained by calcinations of nano-structures of compound 1 at 400 °C under air and nitrogen atmospheres, respectively.  相似文献   

18.
A novel light conversion agent (NLCA) has been synthesized that is applicable to polyethylene (PE) film. The composition and structure of the NLCA was characterized by elemental analysis, Fourier transform infrared (FT‐IR) spectroscopy, and nuclear magnetic resonance (NMR) spectrometry. The morphology, particulate dimensions, dispersion property and compatibility of the NLCA were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results indicate that the average particulate dimension was about 60–100 nm and they were dispersed well in the PE film. The luminescence property of the NLCA was studied via fluorescent spectrometry. The fluorescence spectra of the NLCA show that the NLCA has a highly efficient luminescence.  相似文献   

19.
在p~H为6.3-7.5的介质中,铑(Ⅲ)与间硝基苯基荧光酮以及CTMAB形成三元络合物,其最大吸收波长为608纳米,表观摩尔吸光系数为ε_608=8.89×10~4。铑含量在0-5微克/10毫升范围内服从比耳定律。络合物中铑与显色剂的摩尔比为1:3。运用该法测定了三氧化二铝载体铑催化剂中铑的含量,取得了满意的结果。  相似文献   

20.
Aromatic Gd(III) and Y(III) chelates produce ligand-centered emissions during cathodic pulse polarization of oxide-covered aluminum electrodes, while the corresponding Tb(III) chelates produce metal-centered5D47Fj emissions. It was observed that a redox-inert paramagnetic heavy lanthanoid ion, Gd(III), seems to enhance strongly intersystem crossing in the excited ligand and direct the deexcitation toward a triplet-state emission, while a lighter diamagnetic Y(III) ion directs the photophysical processes toward a singlet-state emission of the ligand. The luminescence lifetime of Y(III) chelates was too short to be measured with our apparatus, but the luminescence lifetime of Gd(III) chelates was between 20 and 70 μs. The mechanisms of the ECL processes are discussed in detail. Preliminary results of electrogenerated triplet-state emission of one of the ligands used in this work have been published in a letter elsewhere [9].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号