首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sample of Eu3+-activated lutetium sesquioxide transparent ceramic has been investigated by combined scintillation and thermoluminescence excited by prolonged gamma-ray irradiation. The thermoluminescence glow curve partially confirms and extends a previous model for afterglow following pulsed X-ray excitation. The initial concentration of hole traps, tentatively attributed to anion Frenkel defects in thermodynamic equilibrium, is found to be substantially augmented by reversible radiation damage.  相似文献   

2.
Eu-doped lutetia (Lu2O3:Eu) nano-phosphors were synthesized by the sol-gel combustion process from a mixed aqueous solution of europium and lutetium nitrates, using organic glycine as the fuel. Powder X-ray diffraction shows that cubic Lu2O3:Eu crystallites are directly obtained by the sol-gel combustion process without further calcination. Electron microscopy reveals that the as-prepared phosphors are agglomerated and have a fluffy, fine, and porous morphology, consisting of primary particle size of 8-10 nm. The excitation spectrum is characterized by three dominant bands centered at 395, 466, and 534 nm, respectively. Both the photoluminescent and radioluminescent spectra are very similar and exhibit intense emission peaks centered at 612 nm due to 5D07F2 transition of Eu3+ ions. The energy transfer from Lu2O3 host to Eu3+ activator is more efficient in the case of calcined phosphors than for the as-prepared phosphors due to their improved lattice perfection.  相似文献   

3.
Luminescence properties of Lu2O3:Eu3+ and Lu2O3:Tb3+ nanocrystalline powders with the particle size varying from 46 to 6 nm were studied under excitation by synchrotron radiation in the photon energy range (up to ∼22.5 eV) covering the region where the processes of multiplication of electronic excitation occur. It was found that the excitation spectra of Tb3+ emission from all Lu2O3:Tb3+ nanopowders have similar behavior, whereas the shape of the excitation spectra of Eu3+ emission from Lu2O3:Eu3+ nanopowders strongly depends on the particle size. The difference in the behavior of Lu2O3:Eu3+ and Lu2O3:Tb3+ nanophosphor systems was explained by different mechanisms of the energy transfer from the host to Eu3+ or Tb3+ ions (either the hole or electron recombination mechanism, respectively), which are differently influenced by losses of electronic excitations near the particle surface.  相似文献   

4.
Nanocrystalline powders of Lu2O3:Eu with the activator content varying in the range of 0.2–10% were prepared through a combustion technique. The powders were only slightly agglomerated and the size of crystallites were about 30 nm. Some of the powders were co-doped with Mg, Ca, Sr, Ba, La of various concentrations. Such powders were cold-pressed and sintered at 1750°C for 5 h in vacuum. X-ray-excited luminescence spectra of both the powders and the sintered ceramics were recorded and the efficiency was compared to the commercial standard Gd2O2S:Pr,Ce,F X-ray phosphor. It was found that the nanocrystalline powders of Lu2O3:Eu,Ca emit photons four-times less than the commercial micron-sized Gd2O2S:Pr,Ce,F powder. In the case of sintered materials the emission efficiency from our Lu2O3:Eu5%, Ca was roughly equal to the efficiency of the commercial-sintered Gd2O2S:Pr,Ce,F. The co-doping ions were shown to have various effects on the transparency of the sintered Lu2O3:Eu. Mg hindered the sintering process producing completely opaque pellets. Other ions facilitated the sintering course and the best results were obtained by co-doping the samples with 0.5% of Ba. Sr and La also significantly stimulated the sintering and the final pellets were only slightly cloudy.  相似文献   

5.
Crystalline Y2O3:Eu is of paramount significance in rare earth materials and research on luminescence spectra. In this work, the nanocrystalline Y2O3:Eu was coated with silica by a facile solid state reaction method at room temperature. The transmission electron microscope (TEM) photographs showed that the prepared Y2O3:Eu particle is polycrystalline with the size of 20 nm, the size of silica-coated particle is about 25 nm. The XPS spectra indicated that the silica layer is likely to interact with Y2O3:Eu by a Si-O-Y chemical bond. The luminescence spectra showed that the intensity of ground samples is lower than that of unground ones, the intensity of silica-coated phosphors is higher than that of the ground samples, while almost the same as that of the unground ones. Therefore, the silica coating decreases the surface defects of nanoparticles of the nanocrystalline Y2O3:Eu, thus increasing their luminescent intensity.  相似文献   

6.
Uniform and crack free polycrystalline lutetium oxide (Lu2O3:(Eu,Pr)) films were fabricated by Pechini sol-gel method combined with the spin-coating technique. X-ray diffraction (XRD) and atomic force microscope (AFM) characterizations indicated that the obtained film was composed of polycrystalline cubic Lu2O3 phase with an average grain size around 30 nm. The photoluminescence(PL) spectra and decay performances of the Lu2O3:5 mol% Eu films co-doped by 0-0.5 mol% Pr3+ with different concentrations were characterized. It was found that the afterglow was reduced obviously due to the introduction of 0-0.5 mol% Pr3+ in the Lu2O3:5 mol% Eu films coupled by decrease in the emission intensity at 612 nm. The mechanism of afterglow diminishing was discussed based on the thermoluminescence measurements.  相似文献   

7.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

8.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

9.
Y2O3:Eu3+ nanocrystals were prepared by combustion synthesis. The particle size estimated by X-ray powder diffraction (XRD) was about 10 nm. A blue-shift of the charge-transfer (CT) band in excitation spectra was observed in Y2O3:Eu3+ nanocrystals compared with bulk Y2O3:Eu3+. The electronic structure of Y2O3 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation (GGA) within the scheme due to Perdew-Burke-Ernzerhof (PBE). The calculated results show that the energy centroid of 5d orbital in nanocrystal has increasing trend compared with that in the bulk material. The bond length and bond covalency are calculated by chemical bond theory. The bond lengths of Y2O3:Eu3+ nanocrystal are shorter than those of the bulk counterpart and the bond covalency of Y2O3:Eu3+ nanocrystal also has an increasing trend. By combining centroid shift and crystal-field splitting, the blue-shift of the CT band is interpreted.  相似文献   

10.
Lutetium oxide nanopowders codoped with Tm3+ and Yb3+ were synthesized by the reverse-strike co-precipitation method. Effects of precipitant solution pH on the structural, morphological and upconversion luminescent properties of Lu2O3:2%Yb, 0.2%Tm nanopowders had been investigated. The results show that pH value of the precipitant (NH4HCO3) solution has a significant effect on the particle size, morphology and upconversion emission intensity of the Lu2O3:2%Yb, 0.2%Tm nanopowders. All the samples obtained from different pH value of precipitant solution can be readily indexed to pure cubic phase of Lu2O3, indicating good crystallinity. The upconversion emission intensity of Lu2O3:2%Yb, 0.2%Tm nanopowders obtained from the precipitant solution with pH=11 is the strongest. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing the number of OH groups and the enlarged nanopowder size. The strong blue, weak red and near infrared emissions from the prepared nanopowders were observed under 980 nm laser excitation, and attributed to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ ion, respectively.  相似文献   

11.
Polycrystalline Lu3Fe5O12, prepared using the solid state reaction method, has Fe in the mixed valence state as inferred from the X-ray photoelectron spectroscopy. A spectral change in the impedance plot at 343 K is attributed to metal-like to insulator transition (MIT), which is analyzed in terms of localized and delocalized egeg electrons. The change in the slope at 343 K in the DC conductivity plot also proves the MIT. The dependence of ZZ on temperature and ZZ on frequency clearly substantiates the presence of localized electrons up to 343 K and delocalized electrons above 343 K.  相似文献   

12.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

13.
Y1.9−xLi0.1EuxO3 (x=0.02, 0.05, 0.08, and 0.12) films were fabricated by spin-coating method. A colloidal silica suspension with Y1.9−xLi0.1EuxO3 phosphor powder was exploited to obtain the highly stable and effective luminescent films onto the glass substrate. After heating as-prepared Y1.9−xLi0.1EuxO3 films at 700 °C for 1 h, the phosphor films exhibit a high luminescent brightness as well as a strong adhesiveness on the glass substrate. The emission spectra of spin-coated and pulse-laser deposited Y1.82Li0.1Eu0.08O3 films were compared. The cathodoluminescence of the phosphor films was carried out at the anode voltage 1 kV.  相似文献   

14.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

15.
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)3:Eu phase and subsequent heat treatment at 350 and 600 °C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)3:Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)3:Eu. The strong and intense Raman peak at 489 cm−1 has been assigned to Ag mode, which is attributed to the hexagonal phase of Gd2O3. The peak at ∼360 cm−1 has been assigned to the combination of Fg and Eg modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement.  相似文献   

16.
Europium-doped yttrium oxide phosphors were obtained by firing precursors prepared by urea precipitation in ethanol and ethylenediamine. The precipitation in non-aqueous solution was carried out in an autoclave at 150°C to allow the decomposition of urea. The photoluminescent intensities of the phosphors prepared in ethanol and ethylenediamine increased by about 30% compared to that of the phosphor prepared by the conventional urea homogeneous precipitation in aqueous solution. Amorphous carbonates and amorphous hydroxides/carbonates mixtures were identified as precursors from ethanol and ethylenediamine, respectively. The morphology and particle size were studied by SEM and dynamic laser scattering method.  相似文献   

17.
The luminescence properties of BaZr(BO3)2:5% Eu were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation and different luminescence behaviors were observed by different excitation energies. After the analyses of the luminescence spectra, the result indicates that Eu3+ occupying non-centrosymmetric sites Ba2+ can be excited preferentially under 254 nm excitation, while Eu3+ occupying centrosymmetric sites Zr4+ can be excited preferentially under 147 nm excitation.  相似文献   

18.
Y2O3:Eu纳米晶中能量传递相互作用的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过浓度猝灭曲线确定了引起Y2O3纳米晶中Eu3+发光浓度猝灭的是交换相互作用.测量了两种颗粒尺寸下Eu3+5D07F2跃迁发光衰减曲线随掺杂浓度的变化,利用交换相互作用的理论衰减曲线对实验衰减曲线进行拟合.计算Eu3+离子的交换相互作用能量传递的效率,分析了Y2O3关键词: 能量传递 2O3Eu纳米晶')" href="#">Y2O3Eu纳米晶 发光衰减  相似文献   

19.
We report detailed study of non-magnetic impurity effects in a two-gap superconductor Lu2Fe3Si5 by replacing Lu with Sc. We find that the superconducting transition temperature Tc is drastically suppressed by slight substitution of Sc, while lattice constants change linearly with the substitution. These results strongly indicate that a slight substitution of Sc increases the inter-band scattering and causes averaging the amplitude of two gaps, which leads to the drastic suppression of Tc.  相似文献   

20.
The behavior of self-trapped defects (STDs) in ion-beam irradiated Lu2SiO5 (LSO) crystal has been investigated via temperature-dependent radioluminescence (RL) measurements. Production of oxygen vacancies is the major effect of H+ irradiation on luminescencent properties of this phosphor. Luminescence centers for self-trapped exciton (STE) and self-trapped hole emission are assigned to oxygen vacancies and oxygen ions, respectively. Ion-induced structural damage modifies the thermal stability of the STDs and creates perturbed STEs. A striking effect of ion irradiation is the approximate factor-of-two enhancement of STE RL intensity that results from implantation of only a thin (∼250 nm) surface layer of LSO. This enhancement is attributed to ion-beam modification of a surface dead layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号