首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different phases of Eu3+ activated gadolinium oxide (Gd (OH)3, GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (CTAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)3:Eu after calcinations at 350 and 600 °C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)3, lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between 5D0 and 7F configurations. Thermoluminescence glow curves of Gd (OH)3: Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source (60CO) in the dose range 10-60 Gy at a heating rate of 6.7 °C sec−1. Well resolved glow peaks in the range 42-45, 67-76, 95-103 and 102-125 °C were observed. When γ-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in γ-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 °C and a new shouldered peak at 86 °C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed.  相似文献   

2.
Electron magnetic resonance (EMR) spectra of gadolinium-doped calcium fluoride have been studied at room temperature for Gd concentrations between 0.01 and 2.00 mol%. Gd3+ ions in sites with two different symmetries were observed. One of the sites, with cubic symmetry, is unstable at room temperature and decays with a time constant of 2.2 day−1. The other site, with tetragonal symmetry, is stable and is attributed to Gd3+ ions in substitutional sites next to a charge-compensating F interstitial ion. The linewidth and intensity of the EMR spectrum with tetragonal symmetry increase with increasing Gd concentration. A theoretical calculation based on the concentration dependence of the EMR linewidth yields an effective range of the exchange interaction between Gd3+ ions in CaF2 of 0.774 nm, of the same order as that of Gd3+ ions in other cubic ionic compounds.  相似文献   

3.
Ultraviolet (UV) upconversion (UC) emissions of Gd3+ ion were investigated in Y1.838−xGdxYb0.16Ho0.002O3 (x=0, 0.16, 0.4, 1, 1.4) bulk ceramics under 976 nm laser diode (LD) excitation. The UC emissions centered at 309 and 315 nm are assigned to the transition of 6P5/28S7/2 (Gd) and 6P7/28S7/2 (Gd). The 6PJ levels of Gd3+ ions are populated by an energy transfer (ET) process from 8S7/2 (Gd)+(3P1, 3L8, 3M10) (Ho)→6PJ (Gd)+5I8 (Ho). A four-photon ET UC process was confirmed by the dependence of the 6P7/2 level emission intensity on the pumping power. We found that the intensity of the UC emissions increased with Gd3+ ion concentration and peaked at 8 mol%, then starts to decrease until the Gd3+ ion concentration reached 70 mol%. The variation in the UV emission intensity is the result of the competition between the ET process and concentration quenching effect. Theoretical calculations based on steady-state equations validated the proposed UC mechanisms.  相似文献   

4.
The photoluminescence of Tb3+ doped M and M′ type gadolinium orthotantalate Gd1−xTbxTaO4 (0.01≤x≤0.20) was investigated under ultraviolet and vacuum ultraviolet excitation. For the samples of Gd1−xTbxTaO4 with different crystallographic structures, emission spectra were the same in addition to intensity; the optimal concentration for Tb3+ was about 10 mol % in M type Gd1−xTbxTaO4 but 5 mol % in M′ type Gd1−xTbxTaO4. These differences could be corresponding with the difference in structures. In addition, compared to commercial Zn2SiO4: Mn2+, the integrated intensity of M and M′ type GdTaO4: Tb3+ could reach 67% and 85%, respectively, of that at 147 nm excitation, which indicates that GdTaO4: Tb3+ would be a promising vacuum ultraviolet phosphor for application in PDP and Hg-free lamp.  相似文献   

5.
It is found that the fluorescence intensity of Tb3+-oxolinic acid (OA) complex can be greatly quenched by albumins in sodium dodecyl sulphate (SLS). Under optimum conditions, the quenched fluorescence intensity is in proportion to the concentration of proteins in the range of 5.0×10−8-1.0×10−5 g ml−1 for bovine serum albumin (BSA), 1.0×10−7-1.0×10−5 g ml−1 for human serum albumin (HSA) and 4.0×10−7-1.0×10−5 g ml−1 for egg albumin (EA). Their detection limits (S/N=3) are 2.1×10−8, 2.5×10−8 and 5.0×10−8 g ml−1, respectively. In addition, the interaction mechanism is also investigated.  相似文献   

6.
A novel co-luminescence system based on the formation of a complex between europium (III) (Eu3+) and gatifloxacin (GFLX) in sodium dodecylbenzene sulfonate (SDBS) micelle solution containing lanthanum (III) (La3+) has been developed for the determination of Eu3+. The experimental results show that the complex formed by Eu3+ and GFLX here can emit the characteristic luminescence of Eu3+. With the addition of La3+, the luminescence intensity of the system was enhanced about 7-fold compared with that without La3+. Under the optimal conditions, the luminescence intensity exhibits an excellent linear relationship with Eu3+ concentration in the range of 1.0×10−10-5.0×10−8 mol L−1. The correlation coefficient (r) is 0.9998, and the detection limit (3σ) is 7.0×10−14 mol L−1. A test method with satisfactory accuracy based on this system was applied to determine trace amounts of Eu3+ in rare earth samples. In addition, the detailed luminescence mechanism of this system was investigated by analyzing the ultraviolet absorption spectra, surface tension, fluorescence polarization, quantum yield, and the number of water molecules in the first coordination sphere of the Eu3+ complex.  相似文献   

7.
Enhanced green photoluminescence and cathodoluminescence (CL) from Tb3+ ions due to co-doping with Ce3+ ions were observed from SiO2:Ce,Tb powder phosphors prepared by a sol-gel technique. Blue emission from the Ce3+ ions was completely suppressed by Tb co-doping, presumably due to energy transfer from Ce3+ to Tb3+. In addition, the green CL intensity from SiO2:Ce,Tb degraded by ∼50% when the powders were irradiated for 10 h with a 2 keV, 54 mA/cm2 beam of electrons in an ultra-high vacuum chamber containing either 1×10−8 or 1×10−7 Torr O2. Desorption of oxygen from the surface was observed during the decrease of CL intensity. The mechanisms for energy transfer from Ce3+ ions to Tb3+ ions to enhance the green luminescence, and mechanisms for desorption of oxygen from the phosphor surface that would result in decreased CL intensity are discussed.  相似文献   

8.
A novel organic ligand, 6-parachloroaniline carbonyl 2-pyridine carboxylic acid, and the corresponding europium complex, tris(6-parachloroaniline carbonyl-2-pyridine carboxylate) europium (III) have been designed and synthesized. The results showed that the synthesized product was a conjugated complex, emitting remarkable strong red luminescence, and was a good red luminescence material with good thermal stability. The 5D0 lifetime of Eu3+ in the complex was examined using time-resolved spectroscopic analysis. The lifetime values for 1.0×10−5 mol/l ethanol solution of the complex and for the complex solid were 0.49±0.01 and 1.94±0.01 ms, respectively.  相似文献   

9.
Er3+:Li3Ba2Gd3(MoO4)8 crystal has been grown from a melt of Li2MoO4 by the top seeded solution growth method (TSSG). The polarized spectral properties of Er3+:Li3Ba2Gd3(MoO4)8 crystal were investigated and the spectroscopic parameters were calculated and analyzed based on the Judd-Ofelt (J-O) theory. The emission cross-sections were calculated by the Fuchtbauer-Ladenburg (F-L) equation and the peak values of the emission band at 1535 nm were 9.7×10−21, 7.9×10−21 and 8.4×10−21 cm2 for Eb, E∥D1 and ED2, respectively. Under 977 nm excitation five up-conversion fluorescence bands around 490, 530, 550, 660 and 800 nm were observed, and the possible up-conversion mechanisms were proposed.  相似文献   

10.
Phosphors CaYBO4:RE3+ (RE=Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360 nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.  相似文献   

11.
Population inversion between the 3H4 and the 3F4 excited states of Tm3+ ions responsible for the 1.5 μm emission in Tm3+ singly doped (0.5%) and Tm3+, Ho3+-codoped fluoride (ZBLAN) glasses and its dependence on the Ho3+ concentration (x=0.2-1%) was investigated by means of numerical solution of the rate equations system for continuous pumping at 797 nm. Mean lifetimes of donor and acceptor states were evaluated by using the integration method applied to the best fitting of fluorescence curves previously reported. Lifetime values were used to obtain the rate constants of all non-radiative energy-transfer processes involved and a complete set of rate equations better describing the observations was given. The rate equations were solved by numerical method and the population inversion between the 3H4 and the 3F4 excited states of Tm3+ was calculated to examine the beneficial effects on the gain associated with Ho3+ codoping. The results have shown that Tm3+ population inversion is reached only for high Ho3+-codoping (?0.3 mol%). Highest population inversion (∼1.6×1018 Tm3+ ions cm−3) was obtained in Tm(0.5%), Ho(1%)-codoped (ZBLAN) pumped by 2.8 kW cm−2. This population inversion density is ∼6.4 times higher than that one observed in Tm:Tb:GLKZ, Tm:Tb:Ge-Ga-As-S-CsBr and Tm:Ho:Ge-Ga-As-S-CsBr for a similar pumping condition (∼2.5×1017 cm−3). In addition, Tm(0.5%):Ho(1%):ZBLAN presents the highest population inversion that linearly increases with the pumping intensity; this behavior does not show saturation effect at least for the maximum intensity of 12 kW cm−2 employed. The use of 1 mol% of Ho3+-codoping maximizes the potential gain of Tm3+-doped (0.5%) ZBLAN to produce stimulated emission near 1.5 μm, making this material suitable for using it as fiber optical amplifier and/or fiber laser operating in 1.4-1.5 μm region of the spectrum.  相似文献   

12.
The influences of gallium substitution for terbium in Gd60Tb40 on the phase formation, Curie temperature and magnetic entropy change have been investigated. A series of Gd60Tb40−xGax with x=0, 1, 3 and 5 alloys were prepared by arc-melting method. The X-ray diffraction (XRD) analysis reveals that a small amount of Ga substitution for terbium in Gd60Tb40 can form the solid solution (Gd, Tb). The Curie temperature (Tc) increases from 270 K for Gd60Tb40 to 297 K for Gd60Tb37Ga3, while the maximum magnetic entropy changes ΔSM, max decreases from 5.15 J/K kg for Gd60Tb40 to 3.32 J/K kg for Gd60Tb37Ga3 with increasing the Ga content.  相似文献   

13.
The fluorescence system of enoxacin-Tb3+-sodium dodecylbenzene sulfonate (SDBS) was investigated in this paper. The experiments indicated that the fluorescence intensity of Tb3+-SDBS was greatly enhanced by enoxacin. Accordingly, a sensitive fluorimetric method for determining enoxacin was established. The fluorescence intensity was measured by a 1-cm quartz cell with an excitation wavelength of 290 nm and an emission wavelength of 545 nm. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of enoxacin in the range of 5.0×10−9 to 2.0×10−6 mol L−1, its correlation coefficient was 0.9992 and the detection limit (S/N=3) was 2.8×10−9 mol L−1. The presented method was used to determine enoxacin in real pharmaceutical samples. The luminescence mechanism was also discussed in detail. In the fluorescence system of enoxacin-Tb3+-SDBS, SDBS not only acted as the surfactant but also acted as the energy donor.  相似文献   

14.
It is found that rutin can react with yttrium(III) (Y3+), and emits fluorescence of rutin. The intensity is greatly enhanced by proteins in the presence of sodium lauryl sulfate (SLS). Based on this, a new fluorimetric method of determination of proteins is developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 5.0×10−9-1.0×10−5 g/mL for bovine serum albumin (BSA), 3.0×10−8-1.0×10−5 g/mL for human serum albumin (HSA) and 1.0×10−7-2.0×10−5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 1.6×10−9, 9.8×10−9 and 2.1×10−8 g/mL, respectively. The interaction mechanism is also studied.  相似文献   

15.
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)3:Eu phase and subsequent heat treatment at 350 and 600 °C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)3:Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)3:Eu. The strong and intense Raman peak at 489 cm−1 has been assigned to Ag mode, which is attributed to the hexagonal phase of Gd2O3. The peak at ∼360 cm−1 has been assigned to the combination of Fg and Eg modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement.  相似文献   

16.
The red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor is improved in the emission charateristics by charge compensation, of which chromaticity coordinates (CIE) are x=0.66 and y=0.33. Three approaches to charge compensation are investigated, namely (a) 3Ca2+/Sr2+→2Eu3+/Gd3++vacancy, (b) 2Ca2+/Sr2+→Eu3+/Gd3++M+(M+ is a monovalent cation like Li+, Na+ and K+ employed as a charge compensator) and (c) Ca2+/Sr2+→Eu3+/Gd3++N (N is a monovalent anion like F, Cl, Br and I employed as charge compensation ions). Through photoluminescent spectra analyzing the radiative and non-radiative relaxation mechanisms of luminescent system are obtained. Under 20 mA forward-bias current, one red-emitting LED is made by combining 390-405 nm-emitting LED chip and the phosphor. The red-emitting phosphor has broad prospects in LED application field.  相似文献   

17.
A new spectrofluorimetric method was developed for the determination of trace amount of nicotinamide adenine dinucleotide phosphate (NADP). Using terbium ion (Tb3+)-ciprofloxacin (CIP) complex as a fluorescent probe, in the buffer solution of pH=9.00, NADP can remarkably enhance the fluorescence intensity of the Tb3+-CIP complex at and the enhanced fluorescence intensity of Tb3+ ion is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 4.9×10−7−3.7×10−6 mol L−1 with detection limit of 1.3×10−7 mol L−1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Tb3+-CIP system and the Tb3+-CIP-NADP system have been also discussed.  相似文献   

18.
Multitopic ligand, 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy), has attracted growing attention because of its unique structural features, optical and electrochemical properties. Here, we report spectroscopic studies of pyterpy and its metal complexes in methanol solution. For the pure pyterpy, the ligand emission intensity increased with its concentration in the dilute solution, but decreased when its concentration was over 1.3×10−5 mol/l due to the concentration quenching. No significant influence on the ligand luminescence was observed for the Zn2+-pyterpy complex but strong luminescence quenching was observed for the electroactive Fe2+- and Co2+-pyterpy complexes. The lanthanide (Sm3+, Eu3+ and Tb3+) complexes of the pyterpy showed both ligand and lanthanide ion emissions, especially for the Tb3+-pyterpy complex, suggesting that the excited energy of pyterpy ligand could be efficiently transferred to the central Tb3+ ions. The luminescence was pH sensitive with the strongest emission in the neutral solution. The results indicated that the multitopic ligand of pyterpy could not only act as linkers for the metal-directed building blocks, but also act as optical materials with its own emission at about 364 nm and as light antenna for the lanthanide ions.  相似文献   

19.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号