首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of hetero‐COSY, HETCOR, HMQC, and HSQC two‐dimensional NMR pulse sequences for detection of 19F–1H correlations by scalar coupling was evaluated on monofluorinated and polyfluorinated test compounds. All four of these sequences were effective in observing 1H–19F correlations, using either 19F or 1H as the observe nucleus. All four sequences were amenable, to some degree, to adjustment to observe larger or smaller couplings preferentially. A 1/2J echo filter was effectively applied to remove artifacts from 2JFF strong coupling. The HETCOR experiments afforded the best overall combination of sensitivity, resolution and selectivity for JHF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We report through‐space (TS) 19F–19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant (TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances (dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F–19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Half-lives and fluorine atom shifts of stabilized 1-fluoro-1-lithioethenes bearing hydrogen, fluorine, phenyl, and/or dimethylphenylsilyl groups in the β-positions have been determined by a low-temperature 19F NMR spectroscopy. Some 1-fluoro-1-lithioethenes displayed an exceptionally low value of the trans-3JFF coupling constant. Stereoselectivity of carbenoid formation, as well as an effect of configuration on the stability is discussed.  相似文献   

5.
19F and 13C NMR spectra of perfluorinated compounds (i.e., tetrafluorophthalic anhydride, its hydroxyl- and amino-derivatives, N-pentafluorophenyltetrafluorophthalimide, and hexafluoroindan-1,3-dione) were analysed. Different signals in NMR spectra were assigned based on the analysis of spin-spin coupling constants. All assignments made were further confirmed by density functional theory (DFT) calculations of 13C chemical shifts and JC,F coupling constants.  相似文献   

6.
NMR is a powerful method for identification and quantification of drug components and contaminations. These problems present themselves as mixtures, and here, one of the most powerful tools is DOSY. DOSY works best when there is no spectral overlap between components, so drugs containing fluorine substituents are well‐suited for DOSY analysis as 19F spectra are typically very sparse. Here, we demonstrate the use of a modified 19F DOSY experiment (on the basis of the Oneshot sequences) for various fluorinated benzenes. For compounds with significant nJFF coupling constants, as is common, the undesirable J‐modulation can be efficiently suppressed using the Oneshot45 pulse sequence. This investigation highlights 19F DOSY as a valuable and robust method for analysis of molecular systems containing fluorine atoms even where there are large fluorine–fluorine couplings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Multiple two‐dimensional nuclear magnetic resonance (2D‐NMR) techniques have been used to study the structures of Krytox® perfluoro(polyalkyl ether) and its mechanism of polymerization. Model compound K4, containing four Krytox® fluoropolymer repeat units, was analyzed to interpret the multiplet patterns in the NMR spectra from the polymer model. 19F {13C}‐Heteronuclear single‐quantum correlation experiments, performed with delays optimized for 1JCF and 2JCF, provided spectra that permitted identification of resonances from individual monomer units. Selective, 19F‐19F COSY 2D‐NMR experiments were performed with different excitation regions; these experiments were combined with selective inversion pulses to remove 19F‐19F J couplings in the f1 dimension. The resulting COSY spectra were greatly simplified compared with standard 19F‐19F COSY spectra, which are too complicated to interpret. They give information regarding the attachments of monomer units and also provide insights into the nature of the stereoisomers that might be present in the polymer. Both infrared and NMR spectra show peaks identifying chain end structures. With the help of these studies, resonances can be assigned, and the average number of repeat units in the polymer chain can be calculated based on the assignments obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The presence of a highly abundant passive nucleus (Z = 19 F or 31P) allows the simultaneous determination of the magnitude and the sign of up to three different heteronuclear coupling constants from each individual cross‐peak observed in a 2D 1H‐X selHSQMBC spectrum. Whereas J(HZ) and J(XZ) coupling constants are measured from E.COSY multiplet patterns, J(XH) is independently extracted from the complementary IPAP pattern generated along the detected F2 dimension. The incorporation of an extended TOCSY transfer allows the extraction of a complete set of all these heteronuclear coupling constants and their signs for an entire 1H subspin system. 1H‐X/1H‐Y time‐shared versions are also proposed for the simultaneous measurement of five different couplings (J(XH), J(YH), J(XZ), J(YZ), and J(ZH)) for multiple signals in a single NMR experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Long-range proton-carbon coupling constants are useful in the assignment of 13C NMR spectra and in stereochemical analysis. The measurement of vicinal coupling constants, 3JC-H, and their interpretation based on appropriate Karplus-type relationships (e.g. for 3JH-C-C-C or 3JH-C-O-C)1–3 provide valuable information in conformational studies of carbohydrates. Nevertheless, the use of 3JC-H in carbohydrate studies is rather rare because their measurement is time consuming and analysis of 1H-coupled 13C NMR spectra is complicated. However, 2D NMR methods 4–6 that allow precise measurement of long-range couplings in a reasonable time have become available recently.  相似文献   

10.
The 19F n.m.r. spectrum of hexafluoroquinazoline has been analyzed giving the signs and magnitudes of all but two of the coupling constants, and supporting the analyses of the 19F n.m.r. spectra of heptafluoroquinoline and heptafluoroisoquinoline. Long range F? F inter-ring coupling constants are a guide for assessing π-electron delocalization pathways. In addition, nitrogen in the β position enhances the distant F-5, F-7 meta-coupling constant, implying a π-contribution to J(FF)meta. A rationalization of changes in peri-coupling constants is also presented. The observed changes appear to be the sum of two effects: (i) ring contraction by the insertion of shorter C? N bonds into the aromatic ring and (ii) a secondary effect which is dependent on the existence of a β-nitrogen, adjacent to the peri nuclei.  相似文献   

11.
The 19F NMR spectra of the cis- ( 1 ) and the trans-isomer ( 2 ) of the 1,2-dichlorotetrafluorocyclopropane and that of the 1,1-dichlorotetrafluorocyclopropane ( 3 ) have been investigated at different temperatures and in several solvents. From chemical shift calculations the two geminal fluorines in the cis-isomer ( 1 ) could be assigned and on this basis the two vicinal coupling constants of 1 , Jtrans (ca. 140°) and Jcis (ca. 0°), were unequivocally distinguished. By frequency sweep double resonance Jtrans has been shown to be of opposite sign to Jgem, whereas for Jcis the situation has been found to be reversed. Therefore Jtrans is presumably negative and Jcis positive. Only the N(Jcis + Jtrans) value could be extracted from the vicinal coupling constant in the fragment ? CFCl? CFCl? could be evaluated. It has been noted that Jcis is more sensitive to changes in temperature than is Jtrans. The variations of Jcis and Jtrans induced by solvents are, on the contrary, small and irregular and no correlation with the dielectric constant of the medium has been noted. The different temperature dependence of Jcis and Jtrans can be useful for assigning the vicinal F? F coupling constants in cyclopropane derivatives and also for defining their signs. This method was applied to the coupling constants extracted from the 13C satellite spectrum of isomer 3 . The coupling constants results were compared with some literature data already known, and some rationalisation and correlations from the trends was attempted.  相似文献   

12.
Two‐ and three‐bond coupling constants (2JHC and 3JHC) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)‐single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP‐HSQMBC and the direct 13C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3JHC. However, the DFT method under estimated the 2JHC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The 35Cl and 19F nuclear relaxation data for liquid CCl3F are analyzed in terms of the extended rotational diffusion model for symmetric top molecules. The J-diffusion limit is shown to be in accordance with the relaxation data, but the M-diffusion limit is incompatible with the data. The 19F spin-rotation coupling constants obtained from the analysis are consistent with predictions based on chemical shift.  相似文献   

14.
An NMR study of a new stereoisomer of isoreserpiline pseudoindoxyl alkaloid is described. The complete 1H and 13C NMR assignments of the compound were carried out using COSY, HMQC and HMBC. Stereochemistry at carbons C‐2, C‐3, C‐15, C‐20 and C‐19 was established using values of 1H chemical shifts, coupling constants and NOESY experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A simple to use nuclear magnetic resonance analysis method has been tested on complex 1H, 19F, and 13C multiplets. This open-source line-shape analysis method analysis of total lineshape (ANATOLIA)1 provides some significant advantages over traditional assign-iterate methods of NMR spectral analysis by avoiding false minima and progressing optimisation to the global minimum. The target molecules are 1-perfluorotol-4-yl-2-perfluorotol-4-yl-oxymethyl-1H-benzimidazole (molecule-I) and 1-tetrafluoropyrid-4-yl-2-tetrafluoropyrid-4-yl-thio-1H-benzimidazole (molecule-II) which were produced as part of a family of fluorinated drug scaffolds prepared for anticancer and antiparasitic screening. Spectra display significant second-order effects with 1H Δδ = 3.68 and 4.67 Hz for the aromatic hydrogen “triplets”, with 19F 4JAA', 4JBB', 4JXX', and 4JYY' coupling constants range from +4.8 to −14.0 Hz and for 13C-isotopomers 19F Δδ of up to 111.56 Hz. A spin-system of six coupling nuclei (HaHbHcHd FYFY') was analysed in 12 s, a spin-system of nine coupling fluorine nuclei (AA'BB'CCC-YY') was analysed within 2 min, and 10 coupling nuclei (XX'YY'ZZZ-BB'-Hd) was optimised in 6 min using a laptop computer. ANATOLIA was also robust enough to be able to yield accurate spectral values from inaccurate input values. In both compounds, a fluorine–fluorine coupling constant was identified between the two fluoro-aromatic rings (FBB' and FYY') of +4.05 and +4.67 Hz and attributed to a through-space interaction. Ab initio structure optimisations and coupling constant calculations provided useful input data for spectral analysis. A modern 19F nuclear magnetic resonance spectrum of perfluorotoluene (octafluorotoluene) and analysis from 1975 was used as a test data set to assess ANATOLIA.  相似文献   

16.
The 1J(11B19F) spin–spin coupling of gaseous BF3 was observed in 11B NMR spectra as a function of density in a wide range of temperatures. Following the extrapolation of the measured values to the zero‐density limit, the coupling constant free from intermolecular effects 1J0(11B19F) was obtained for each temperature. In contrast to previous investigations, the final results indicate a nonlinear dependence of 1J0(11B19F) on temperature. In the corresponding ab initio calculations of spin–spin coupling constants performed at the coupled cluster singles and doubles (CCSD) level to obtain a reliable result for this coupling constant we had to take into account large vibrational corrections. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An effective pulse sequence for measuring H–H coupling constants, named BASHD‐J‐resolved‐COSY, has been developed. In the spin systems such as –CHA–CHB(CH3)–CHC–, a methine proton HB splits into a multiplet owing to several vicinal couplings, resulting in attenuation of its cross‐peak intensity. Therefore, the measurements of 3JH–H with respect to HB are generally difficult in the E‐COSY‐type experiments. With the aim of accurate measurements of 3JH‐H in such a spin system, we have developed a new pulse sequence, which selectively decouples the secondary methyl group. The proposed pulse sequence provides the simplified cross‐peak patterns, which are suitable for reliable measurements of 3JH‐H in a complicated natural product. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Consideration of 19F-19F and 29Si-19F coupling constants in a series of organosilicon derivatives containing SiF2 and Si2F4 units reveals a number of trends which are useful for structural and stereochemical assignments. For example the vicinal 19F-19F coupling constants in a number of CSiF2SiF2C- derivatives (including straight chain compounds, disilacyclobutanes and disilacyclohexanes) show an apparent linear dependence on dihedral angle, varying in magnitude from near zero for small values of φ up to ca. 19 Hz for φ ~ 180°. This is particularly useful for stereochemical assignments [1,2]. In addition 29Si-19F coupling constants appear to fall in quite distinct ranges (1JSiF > 300 Hz, 29 Hz < 2JSiF < 55 Hz, 3JSiF < 10 Hz). This is quite useful for structural assignments [1,6]. Reaction of SiF2 with 1,3-cyclohexadiene gives two new silicon fluorine compounds: a disilabicyclo[2,2,2]octene and an HSi2F5-substituted cyclohexadiene.  相似文献   

19.
d ‐Glucaric acid (GA) is an aldaric acid and consists of an asymmetric acyclic sugar backbone with a carboxyl group positioned at either end of its structure (i.e., the C1 and C6 positions). The purpose of this study was to conduct a conformation analysis of flexible GA as a solution in deuterium oxide by NMR spectroscopy, based on J‐resolved conformation analysis using proton–proton (3JHH) and proton–carbon (2JCH and 3JCH) coupling constants, as well as nuclear overhauser effect spectroscopy (NOESY). The 2JCH and 3JCH coupling constants were measured using the J‐resolved heteronuclear multiple bond correlation (HMBC) NMR technique. NOESY correlation experiments indicated that H2 and H5 were in close proximity, despite the fact that these protons were separated by too large distance in the fully extended form of the chain structure to provide a NOESY correlation. The validities of the three possible conformers along the three different bonds (i.e., C2? C3, C3? C4, and C4? C5) were evaluated sequentially based on the J‐coupling values and the NOESY correlations. The results of these analyses suggested that there were three dominant conformers of GA, including conformer 1 , which was H2H3:gauche, H3H4:anti, and H4H5:gauche; conformer 2 , which was H2H3:gauche, H3H4:anti, and H4H5:anti; and conformer 3 , which was H2H3:gauche, H3H4: gauche, and H4H5:anti. These results also suggested that all three of these conformers exist in equilibrium with each other. Lastly, the results of the current study suggested that the conformational structures of GA in solution were ‘bent’ rather than being fully extended. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
High-precision line measurements and tickling were shown to yield information, often not accessible, on the assignment and signs of spin coupling constants. For pentafluorothiophenol-d, this information was obtained for the three meta-JFF's. Relative to C6F5SH, the 19F resonances in C6F5SD experienced an upfield ‘isotope’ shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号