首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
2.
3.
4.
5.
6.
In this paper we first investigate some basic properties concerning nondegenerate α-times integrated C-cosine functions on a Banach space X, and then characterize their generator A in terms of the unique existence of strong solutions of the following abstract Cauchy problem: for t>0, u(0)=x, u(0)=y.  相似文献   

7.
In this paper we establish existence-uniqueness of solution of a class of singular boundary value problem −(p(x)y(x))=q(x)f(x,y) for 0<x?b and y(0)=a, α1y(b)+β1y(b)=γ1, where p(x) satisfies (i) p(x)>0 in (0,b), (ii) p(x)∈C1(0,r), and for some r>b, (iii) is analytic in and q(x) satisfies (i) q(x)>0 in (0,b), (ii) q(x)∈L1(0,b) and for some r>b, (iii) is analytic in with quite general conditions on f(x,y). Region for multiple solutions have also been determined.  相似文献   

8.
In this paper we prove that the problem x(t)=f(x(t))+h(t), x(0)=0, where f and h are non-negative, f is finite a.e. and , h are Lebesgue integrable, has an absolutely continuous solution.  相似文献   

9.
The blowup phenomena of solutions is investigated for the Euler equations of compressible fluid flow. The approach is to construct special explicit solutions with spherical symmetry to study certain blowup behavior of multi-dimensional solutions. In particular, the special solutions with velocity of the form c(t)x are constructed to show the expanding and blowup properties. The solution with velocity of the form for γ?1 and for any space dimensions is obtained as a corollary. Another conclusion is that there is only trivial solution with velocity of the form c(t)|x|α-1x for α≠1 and multi-space dimensions.  相似文献   

10.
In the paper we study the existence and uniqueness of bounded solutions for differential equations of the form: xAx=f(t,x), xAx=f(t,x), where AL(Rm), is a Carathéodory function and the homogeneous equations xAx=0, xAx=0 have nontrivial solutions bounded on R. Using a perturbation of the equations, the Leray-Schauder Topological Degree and Fixed Point Theory, we overcome the difficulty that the linear problems are non-Fredholm in any reasonable Banach space.  相似文献   

11.
In this paper we examine existence of monotone approximations of solutions of singular boundary value problem -(p(x)y(x))=q(x)f(x,y,py) for 0<x?b and limx→0+p(x)y(x)=0,α1y(b)+β1p(b)y(b)=γ1. Under quite general conditions on f(x,y,py) we show that solution of the singular two point boundary value problem is unique. Here is allowed to have integrable singularity at x=0 and we do not assume .  相似文献   

12.
Let m be a positive integer and fm(x) be a polynomial of the form fm(x)=x2+xm. We call a polynomial fm(x) a Rabinowitsch polynomial if for and consecutive integers x=x0,x0+1,…,x0+s−1, |fm(x)| is either 1 or prime. In this paper, we show that there are exactly 14 Rabinowitsch polynomials fm(x).  相似文献   

13.
We consider, for p∈(1,2) and q>1, self-similar singular solutions of the equation vt=div(|∇v|p−2v)−vq in Rn×(0,∞); here by self-similar we mean that v takes the form v(x,t)=tαw(|x|tαβ) for α=1/(q−1) and β=(q+1−p)/p, whereas singular means that v is non-negative, non-trivial, and for all x≠0. That is, we consider the ODE problem
(0.1)  相似文献   

14.
First, we consider the linear wave equation uttuxx+a(x)ut+b(x)u=0 on a bounded interval (0,L)⊂R. The damping function a is allowed to change its sign. If is positive and the spectrum of the operator (xxb) is negative, exponential stability is proved for small . Explicit estimates of the decay rate ω are given in terms of and the largest eigenvalue of (xxb). Second, we show the existence of a global, small, smooth solution of the corresponding nonlinear wave equation uttσx(ux)+a(x)ut+b(x)u=0, if, additionally, the negative part of a is small enough compared with ω.  相似文献   

15.
16.
Positive periodic solutions of functional differential equations   总被引:1,自引:0,他引:1  
We consider the existence, multiplicity and nonexistence of positive ω-periodic solutions for the periodic equation x′(t)=a(t)g(x)x(t)−λb(t)f(x(tτ(t))), where are ω-periodic, , , f,gC([0,∞),[0,∞)), and f(u)>0 for u>0, g(x) is bounded, τ(t) is a continuous ω-periodic function. Define , , i0=number of zeros in the set and i=number of infinities in the set . We show that the equation has i0 or i positive ω-periodic solution(s) for sufficiently large or small λ>0, respectively.  相似文献   

17.
The classical criterion of asymptotic stability of the zero solution of equations x=f(t,x) is that there exists a function V(t,x), a(‖x‖)?V(t,x)?b(‖x‖) for some a,bK, such that for some cK. In this paper we prove that if f(t,x) is bounded, is uniformly continuous and bounded, then the condition that can be weakened and replaced by and contains no complete trajectory of , t∈[−T,T], where , uniformly for (t,x)∈[−T,TBH.  相似文献   

18.
In this paper, we consider the existence and multiplicity of positive periodic solutions for first-order vector differential equation x(t)+f(t,x(t))=0, a.e. t∈[0,ω] under the periodic boundary value condition x(0)=x(ω). Here ω is a positive constant, and is a Carathéodory function. Some existence and multiplicity results of positive periodic solutions are derived by using a fixed point theorem in cones.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号