首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We present results on the photoluminescence (PL) properties of porous silicon (PS) as a function of time. Stabilization of PL from PS has been achieved by replacing silicon-hydrogen bonds terminating the surface with more stable silicon-carbon bonds. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy at intervals of 1 month in ageing time up to 1 year. The position of the maximum PL peak wavelength oscillates between a blue-shift and a red-shift in the 615-660 nm range with time.  相似文献   

2.
In this work, an ultrasonically enhanced anodic electrochemical etching is developed to fabricate light-emitting porous silicon material. Porous silicon layer is fabricated in n-type (1 0 0) oriented silicon using HF solution and treated in selenious acid to increase the photoluminescence intensity. It is found that the increase of photoluminescence intensity after selenious acid treatment is higher in the intact zones and lower in the detached zones of ultrasonic excitation. The photoluminescence appears as a non-monotonous function of time exposure of selenious acid treatment. Surface chemical composition analysis by X-ray photoelectron spectroscopy shows formation of Si-Sex and Si-Sex-Oy on the surface of porous silicon treated with the selenious acid.  相似文献   

3.
Porous GeSi/Si heterostructures were fabricated by laterally anodization in HF-based solutions. Photoluminescence spectra have been investigated as a function of temperature (77–300 K), showing that porous GeSi has a quite different temperature dependence from that of porous silicon. Raman spectra indicated that the sample structure changed after anodization. Phonon participation and direct recombination of excitons are proposed to be responsible in the light emission processes of porous GeSi and Si, respectively.  相似文献   

4.
The correlation of the excitation-wavelength dependent photoluminescence with the fractal microstructures of porous silicon has been investigated. As the excitation wavelength increases from 340 to 650 nm, the photoluminescence of porous silicon redshifts from 500 to 780 nm. The excitation-wavelength dependent photoluminescence suggests the existence of a size distribution for the large number of silicon nanocrystallites in porous silicon. Using scanning electron microscopy and computer simulation, we have investigated the fractal features of the microstructures of porous silicon. Our results have demonstrated that the fractal features in the microstructures of porous silicon indicate the existence of a size distribution for the silicon nanocrystallites in porous silicon. The recorded excitation-wavelength dependent photoluminescence of porous silicon can be interpreted in terms of the bond-order-length-strength correlation theory.  相似文献   

5.
Tin oxide (SnO2)-layers-doped terbium and europium ions are elaborated by the sol-gel method on silicon substrates. After annealing at 500 °C, the transmission electron microscopy revealed a crystallization of tin oxide.The emission properties of rare-earth in SnO2 are studied systematically against temperature annealing and Tb3+ concentration. The PL spectrum is optimal after annealing at 900 °C and the corresponding photoluminescence (PL) decay is nearly exponential, showing that the sample is homogenous and the PL process can be described by two levels system.The concentration effect shows a quenching of the PL intensity for Tb3+ concentration above 4%. From the investigation of the decay rate from the 7F5 state within terbium concentration, we show that self-quenching is insured by dipole - dipole interaction. The evolutions of both PL intensity and PL lifetime versus temperature are studied. The PL intensity and PL lifetime are enhanced by deposing SnO2:Tb3+ and SnO2:Eu3+ in porous silicon. We show that an efficient excitation transfer from Si nanocrystallites to RE ions can occur.  相似文献   

6.
Single-mode, highly directional and stable photoluminescence (PL) emission has been achieved from porous silicon microcavities (PSMs) fabricated by pulsed electrochemical etching. The full width at half maximum (FWHM) of the narrow PL peak available from a freshly etched PSM is about 9 nm. The emission concentrates in a cone of 10° around the normal of the sample, with a further reduced FWHM of ∼5.6 nm under angle-resolved measurements. Only the resonant peak is present in such angle-resolved PL spectra. No peak broadening is found upon exposure of the freshly prepared PSM to a He-Cd laser beam, and the peak becomes somewhat narrower (∼5.4 nm) after the PSM has been stored in an ambient environment for two weeks. At optimized etching parameters, even a 4-nm FWHM is achievable for the freshly etched PSM. In addition, scanning electron microscopy (SEM) plane-view images reveal that the single layer porous Si formed by pulsed current etching is more uniform and flatter than that formed by direct current (dc) etching, demonstrated by the well-distributed circular pores with small size in the former in comparison with the irregular interlinking pores in the latter. The SEM cross-section images show the existence of oriented Si columns of 10 nm diameter along the etching direction within the active layer, good reproducibility and flat interfaces. It is thus concluded that pulsed current etching is superior to dc etching in obtaining flat interfaces within the distributed Bragg reflectors because of its minor lateral etching. Received: 7 March 2001 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

7.
We have investigated the effects of chemical etching on Raman spectra of porous silicon. The as-anodized porous silicon consisted mainly of crystalline silicon, as indicated by the Raman spectra. The background in the spectrum was strong, indicating that the porous silicon surface was rough due to the presence of pores. When chemical etching was performed five times, the Raman spectrum revealed the presence of spherically shaped nanocrystalline silicon whose diameter was around 3.5 nm. Further chemical etching, however, extinguished the nanocrystallites, in addition to smoothing the surface morphology.  相似文献   

8.
Photoluminescence of porous silicon (PS) is instable due perhaps to the nanostructure modification in air. The controllable structure modification processes on the as-prepared PS were conducted by thermal oxidization and/or HF etching. The PL spectra taken from thermally oxidized PS showed a stable photoluminescence emission of 355 nm. The photoluminescence emission taken from both of PS and oxidized porous silicon (OPS) samples etched with HF were instable, which can be reversibly recovered by the HF etching procedure. The mechanism of UV photoluminescence is discussed and attributed to the transformation of luminescence centers from oxygen deficient defects to the oxygen excess defects in the thermal oxidized PS sample and surface absorbed silanol groups on PS samples during the chemical etched procedure.  相似文献   

9.
Iron is incorporated in porous silicon (PS) by impregnation method using Fe(NO3)3 aqueous solution. The presence of iron in PS matrix is shown from energy-dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) measurements. The optical properties of PS and PS-doped iron are studied by photoluminescence (PL). The iron deposited in PS quenched the silicon dangling bonds then increased the PL intensity. The PL peak intensity of impregnated PS is seven times stronger than that in normal PS. Upon exposing iron-PS sample to ambient air, there is no significant change in peak position but the PL intensity increases during the first 3 weeks and then stabilises. The stability is attributed to passivation of the Si nanocrystallites by iron.  相似文献   

10.
For the first time, the photoluminescence (PL) spectra of anodic porous alumina (P-Al) films impregnated with essentially non-fluorescent morin and morin-trypsin (Try) were investigated and compared with those of liquid solutions. It was found that their PL positions are similar to that of dye-Al3+ in ethanol solution, and the PL intensity of embedded dye-Try is much higher than that of embedded dye alone. We infer that the appearance of the PL band detected here is due to the formation of morin-Al complex in the holes of P-Al with the inner wall involved, and a likely luminescent mechanism is proposed to elucidate the PL enhancement phenomena due to the coexistence of morin and Try in the P-Al pores, which is confirmed by UV and FTIR measurements. Moreover, it is also found that the PL intensity increases with the pore size.  相似文献   

11.
Two bands in the photoluminescence excitation spectra have been studied for the red, blue, and IR emission of oxidized porous silicon (PS) and PS with Er3+- and Yb3+-containing gadolinium oxychloride complex (PS:Er,Yb), introduced by thermal diffusion. These two spectral bands were shown to reflect contributions of two different mechanisms of excitation-emission processes. The UV band for the IR emission of PS:Er,Yb rose sharply at about 290 nm and was explained by the direct photoemission of carriers from the valence band of Si crystallites into the conduction band of the oxide shell. The second band was found to be common for the red and blue emission and assosiated with the carriers photoexcitation inside the Si crystallites. Lifetimes for both bands were measured and the structure of the blue emission from PS:Er,Yb with peaks at 416, 440, 466, and 500 nm from PS:Er,Yb was observed.  相似文献   

12.
Mg2+-, Ca2+-, Sr2+- and Ba2+-doped silica glasses have been prepared using sol-gel processing by employing Si(OC2H5)4, MgCl26H2O, CaCl22H2O, SrCl26H2O and BaCl22H2O as precursors, with HCl as a catalyst. The UV–visibleabsorption spectra of the doped samples are almost the same as those of the undoped sample. The absorption bands of alkaline earth metallic ions have not been observed in the doped samples. Strong visible light has been observed from sol- gel silica glasses doped with alkaline earth metallic ions. The relative fluorescence intensity of the Sr2+-doped (the impurity mole ratio of Sr2+ was 0.268%) and the Ba2+-doped (the impurity mole ratio of Ba2+ was 0.448%) samples was about 4 times that of the undoped sample. The relative fluorescence intensity of the Mg2+-doped (the impurity mole ratio of Mg2+ was 0.069%) sample was about 2.5 times that of the pure glass sample. The relative fluorescence intensity of the Ca2+- doped (the impurity mole ratio of Ca2+ was 0.179%) sample was about 3 times that of the pure glass sample. Alkaline earth metallic ions affect the formation and conversion of luminescent defects in sol-gel silica glass. Thus, the relative fluorescence intensity of the doped samples increases more than that of the undoped sample. Received: 17 April 2001 / Accepted: 6 June 2001 / Published online: 30 August 2001  相似文献   

13.
In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.  相似文献   

14.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

15.
The site-selective excitation and emission spectroscopy, and luminescence decay have been investigated under a pulsed, tunable, narrowband dye laser of the 5D07F0 region in the europium ions-doped lead tungstate PbWO4 (PWO) in single crystal. In as-grown sample, the experimental results show that there is only one 7F05D0 excitation transition indicating the only one Eu3+ site in PbWO4 lattices. The sequential annealing treatments were conducted to investigate the effects of oxygen components on the microstructure environments of Eu3+ in the lattices. The site distribution of Eu3+ was changed by the annealing in air atmosphere, which could create new sites in PWO lattices. Confirmation of interstitial oxygen and interpretations of charge compensation mechanism for the observed new sites were discussed in the context of site-selective excitation and emission spectra. The main Eu3+ site is related to the charge compensation by the [(EuPb3+)-V″Pb-(EuPb3+)] complex; the other minor new sites after annealing are originated from [(EuPb3+)-O″i-(EuPb3+)] defects. Emission spectra excited by 355-laser and RT-Raman spectra were also measured.  相似文献   

16.
A novel electroless method of producing porous silicon carbide (PSiC) is presented. Unlike anodic methods of producing PSiC, the electroless process does not require electrical contact during etching. Rather, platinum metal deposited on the wafer before etching serves as a catalyst for the reduction of a chemical oxidant, which combined with UV illumination injects holes into the valence band, the holes subsequently participating in the oxidation and dissolution of the substrate. The etchant is composed of HF and K2S2O8 in water. Various porous morphologies are presented as a function of etchant concentration, time of etching, and SiC polytype. Wafer quality is of the utmost concern when utilizing the electroless wet etchant, since defects such as stacking faults, dislocations, and micropipes have a large impact on the resulting porous structure. Results of imaging and spectroscopic characterization indicate that the porous morphologies produced in this manner should be useful in producing sensors and porous substrates for overgrowth of low dislocation density epitaxial material.  相似文献   

17.
ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 °C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 °C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 °C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 °C was blue shifted by 2 nm compared to those grown at 600 °C. This shift could be attributed to surface effect.  相似文献   

18.
This paper reports preliminary results obtained on an experimental apparatus dedicated to the study of angular resolved energy distribution of particles emitted from a sputtered target. Secondary ions emitted during the bombardment of a silicon target by xenon ions at a primary energy of 10keV have been studied. In its low energy part the distribution reaches a maximum around 8eV, and then decreases according to an E –1 law. In the range 200eV to 1000eV, a second maximum appears whose height depends on the emission angle. Apart from this range, the angular distributions have a cosine square-like shape. On the contrary, the angular distribution of ions with energy between 200eV and 1000eV is pointed in a forward direction near the specular reflection direction of the ion beam. It is assumed that the measured ions correspond to two ionic populations: secondary ions sputtered according to the linear cascade theory and recoil silicon target ions.  相似文献   

19.
Thin layers of hydrogenated amorphous carbon were prepared by using organic hydrocarbon source, xylene (C8H10), in plasma-enhanced chemical vapor deposition (PECVD) system. The microstructures were characterized by using Fourier-transform infrared and Raman scattering spectra. The appearance of a sharp vibration signal in 1600 cm-1 strongly suggests the existence of sp2 carbon clusters with aromatic rings. With increasing the deposition rf power, the content of these aromatic structures is increased in the films. In contrast to a broad single PL peak in methane (CH4)-baseda-C:H films, the PL band of xylene-based a-C:H films contains multiple peaks in blue-green light region, which is influenced by rf power. We tentatively attributed it to the radiative recombination of electron-hole pairs through some luminescent centers associated with aromatic structures. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 13 September 2000  相似文献   

20.
Effects of vacuum and ambient thermal annealing and ageing on the photoluminescence (PL) spectra of porous silicon (po-Si) have been investigated. Isochronal anneals up to 300°C were done and PL spectra were recorded and compared to the un-annealed specimens. Minimal changes are induced for anneals below approximately 125°C; however, significant reduction in PL intensity occurs following anneals at T?≥?200°C. Deconvolution of the PL spectra into five distinct Gaussian bands reveals that at least two of the bands are attributable to non-quantum confinement mechanisms. Specifically, bands appearing at 1.58 and 1.78?eV are ascribed to non-bridging oxygen hole related defects. Recovery of PL intensity following thermal annealing occurs over a period of several days at a rate that is dependent upon annealing temperature and environment. Passivation of Si dangling bonds on the po-Si surface via effusion of hydrogen and incorporation of oxygen is responsible for the observed variations in PL intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号