首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

2.
[Mg(HF)2](SbF6)2 and [Ca(HF)2](SbF6)2 monocrystals were grown from the corresponding hexafluoroantimonates(V) dissolved in anhydrous hydrogen fluoride. [Mg(HF)2](SbF6)2 crystallizes in the space group Pnma (no. 62) with a=1249.1(4) pm, b=1230.2(4) pm, c=699.1(2) pm, V=1.0742(6) nm3, Z=4. Magnesium is octahedrally coordinated by six fluorine atoms from which two belong to two HF molecules. The structure can be represented by alternating rows of magnesium and antimony atoms running parallel to the c-axis. Magnesium atoms are connected by cis bridging Sb(2)F6 units along the a-axis and by trans bridging Sb(1)F6 units along the b-axis. In this way a three-dimensional network is formed.[Ca(HF)2](SbF6)2 crystallizes in the space group P21/n (no. 14) with a=935.2(3) pm, b=1088.7(3) pm, c=1104.8(3) pm, β=106.697(5)°, V=1.0774(5) nm3, Z=4. The coordination sphere around the calcium atom consists of eight fluorine atoms which define the vertices of an Archimedean antiprism. The two HF molecules directly coordinate the calcium atom and their fluorine atoms are placed in the corners of different square faces of the Archimedean antiprism. The Ca-F(HF) distances are shorter than the Ca-F(Sb) distances. The Sb(1)F6 and Sb(2)F6 groups have four equatorial bridging fluorine atoms, while the Sb(3)F6 groups have only two bridging trans F ligands. The Ca atoms in the [−1,0,1] plane are connected by equatorial F ligands of Sb(1)F6 and Sb(2)F6 units, forming a [Ca(SbF6)+]n layer. These layers are connected by trans bridging Sb(3)F6 groups. HF molecules occupy the space between these layers and additionally contribute to the connection between the layers by hydrogen bonding.  相似文献   

3.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

4.
The germanide Yb2Ru3Ge4 was synthesized from the elements using the Bridgman crystal growth technique. The monoclinic Hf2Ru3Si4 type structure was investigated by X-ray powder and single crystal diffraction: C2/c, Z=8, a=1993.0(3) pm, b=550.69(8) pm, c=1388.0(2) pm, β=128.383(9)°, wR2=0.0569, 2047 F2 values, and 84 variables. Yb2Ru3Ge4 contains two crystallographically independent ytterbium sites with coordination numbers of 18 and 17 for Yb1 and Yb2, respectively. Each ytterbium atom has three ytterbium neighbors at Yb-Yb distances ranging from 345 to 368 pm. The shortest interatomic distances occur for the Ru-Ge contacts. The three crystallographically independent ruthenium sites have between five and six germanium neighbors in distorted trigonal bipyramidal (Ru1Ge5) or octahedral (Ru2Ge6 and Ru3Ge6) coordination at Ru-Ge distances ranging from 245 to 279 pm. The Ru2 atoms form zig-zag chains running parallel to the b-axis at Ru2-Ru2 of 284 pm. The RuGe5 and RuGe6 units are condensed via common edges and faces leading to a complex three-dimensional [Ru3Ge4] network.  相似文献   

5.
A review of all known compounds of the type [Mn(L)m](AF6)n (M is a metal in the oxidation state n; A = P, As, Sb and Bi; L = HF, AsF3 and XeF2) is given with the emphasis on the compounds isolated and characterized by our group. The synthetic routes for the preparation of these compounds are given together with a brief analysis of their structures. In the case of L = XeF2 the influence of the properties of the cation and the anion on the structural diversity of these coordination compounds is discussed. A brief analysis of their Raman spectra is also given.  相似文献   

6.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

7.
Hg(AuF6)2 crystallizes at 200 K in the orthorhombic space group Pbcn (No. 60) with a = 917.67(7) pm, b = 971.59(8) pm, c = 962.04(8) pm, and Z = 4. Mercury atoms are coordinated by eight fluorine atoms with six short and two long Hg-F contacts. HgF8 polyhedra share their four vertices and two edges with six AuF6 units forming a tridimensional framework.The results of X-ray diffraction analysis on single crystals of AgFAuF6 are in agreement with previously known powder X-ray diffraction data (Casteel et al, J. Solid State Chem. 96 (1992) 84-96). AgFAuF6 crystallizes orthorhombic in the space group Pnma (No. 62), a = 717.06(7) pm, b = 761.67(7) pm, c = 1013.61(10) pm at 200 K, Z = 4.  相似文献   

8.
ANi(AsF6)3 (A = O2+, NO+, NH4+) compounds could be prepared by reaction between corresponding AAsF6 salts and Ni(AsF6)2. When mixtures of AF (A = Li, Na, K, Rb, Cs) and NiF2 are dissolved in aHF acidified with an excess of AsF5 the corresponding AAsF6 and Ni(AsF6)2 were formed in situ. For A = Li and Na only mixtures of AAsF6 and Ni(AsF6)2 were obtained, while for A = K, Rb and Cs, the final products were ANi(AsF6)3 (A = K-Cs) compounds contaminated with AAsF6 (A = K-Cs) and Ni(AsF6)2.ANi(AsF6)3 (A = H3O+, O2+, NO+, NH4+ and K+) compounds are structurally related to previously known H3OCo(AsF6)3. The main features of the structure of these compounds are rings of NiF6 octahedra sharing apexes with AsF6 octahedra connected into infinite tri-dimensional network. In this arrangement cavities are formed where single charged cations are placed.In O2Ni(AsF6)3 the vibrational band belonging to O2+ vibration is found at 1866 cm−1, which is according to the literature data one of the highest known values, and it is only 10 cm−1 lower than the value for free O2+.  相似文献   

9.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

10.
The lanthanum iron carbide La3.67[Fe(C2)3] was prepared from the elements by argon arc-melting followed by annealing. The crystal structure of the ternary phase was reported previously (space group P63/m with a=878.7(2) pm, and c=535.1(1) pm) [A.M. Witte, W. Jeitschko, Z. Naturforsch. 51b (1996) 249-255]. In the present work the compound was reinvestigated by X-ray powder and single crystal diffraction, and was further characterized by metallographic methods and chemical analyses. Our diffraction data clearly reveal a superstructure with weak superstructure reflections in the space group P63/m with a=879.26(8) pm and c=1604.59(15) pm, thus tripling the previously reported subcell. The crystal structure (refinement to R1=0.044 and wR2=0.075 for 1387 unique reflections and 60 variables) contains Fe(C2)3 trigonal planar groups with the C2 ligands bonded end-on to the Fe atoms. The C-C distance is typical for a double bond. La atoms as the least electronegative component surround the complex anions and form a framework of face-sharing tricapped trigonal prisms. The resulting hexagonal channels at 0, 0, z of the partial structure with chemical composition La3FeC6 are occupied by four additional La atoms per unit cell. These La atoms are fully ordered within a linear chain and display a Peierls-like distortion pattern. However, no long-range order in the ab plane has been observed due to the random orientation of the chains. Because of the two different orientations which are possible for each chain the situation is similar to an Ising model on a triangular lattice.  相似文献   

11.
The structure of Laves-phase deuteride YFe2D4.2 has been investigated by synchrotron and neutron (ToF) powder diffraction experiments between 60 and 370 K. Below 323 K, YFe2D4.2 crystallizes in a fully ordered, monoclinic structure (s.g. Pc, Z=8, a=5.50663(4), b=11.4823(1), c=9.42919(6) Å, β=122.3314(5)°, V=503.765(3) Å3 at 290 K) containing 4 yttrium, 8 iron and 18 deuterium atoms. Most D-D distances are, within the precision of the diffraction experiment, longer than 2.1 Å; the shortest ones are of 1.96 Å. Seven of eight iron atoms are coordinated by deuterium in a trigonal bipyramid, similar to that in TiFeD1.95−2. The eighth iron atom is coordinated by deuterium in a tetrahedral configuration. The coordination of iron by deuterium, and the iron-deuterium distances point to the importance of the directional bonding between iron and deuterium atoms. The lowering of crystal symmetry due to deuterium ordering occurs at much higher temperature than the magnetic ordering, and is therefore one of the parameters that are at the origin of the magnetic transition at lower temperatures.  相似文献   

12.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

13.
A facile one pot method of synthesis of tin arsenide Sn4As3 starting from metallic tin and elemental arsenic under mild solvothermal conditions in ethylenediamine in the presence of ammonium chloride is offered. The dissolving of the tin metal in ethylenediamine and the role of NH4Cl are discussed. The crystal structure of Sn4As3 has been re-determined. It is shown to crystallize in the trigonal non-centrosymmetric space group R3m, (a=4.089(1) Å, c=36.059(6) Å, Z=3), which differs from the previously reported centrosymmetric structure . The crystal structure of Sn4As3 consists of alternating layers of arsenic and tin atoms that are combined into seven-layer blocks and build up along the c-axis. The major structural feature is the short tin-tin distances (3.24 Å) between the adjacent blocks. The analysis of the density of states and band structure reveals that Sn4As3 should have metallic properties, which is in line with the previously reported experimental observations. Analysis of chemical bonding employing the electron localization function shows that only for the shortest Sn-As contacts the bonding is pairwise, while four-center bonds are formed between arsenic and tin atoms at relatively long distances (>2.85 Å). Moreover, each tin atom holds an electron lone-pair.  相似文献   

14.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

15.
The title compounds were isolated in well-crystallized form from samples with a substantial excess of antimony, annealed at temperatures slightly below the melting point of that element. Their crystal structures were determined from single-crystal diffractometer data. Pr9-xSb21-y and Nd9-xSb21-y crystallize with a new monoclinic structure type, Pearson symbol mS(62-5.4), space group Cm, Z=2 with a=2859.1(4) pm, b=426.3(1) pm, c=1356.1(2) pm, β=95.52(1)°, R=0.034 for 4351 structure factors and 188 variable parameters for Pr9-xSb21-y and a=2845(2) pm, b=424.7(8) pm, c=1345.9(9) pm, β=95.42(7)°, R=0.069 for 2928 F values and 188 variables for Nd9-xSb21-y. Of the 30 atomic sites, three show fractional occupancy corresponding to the compositions Pr8.303(5)Sb20.03(1) and Nd8.30(2)Sb19.98(9), respectively. A model for the order of occupied atomic sites with a tripled b-axis is proposed resulting in the ideal compositions Pr5Sb12 and Nd5Sb12. The holmium compound Ho2Sb5 has a Dy2Sb5-type structure: mP28, P21/m, a=1301.8(3) pm, b=414.9(1) pm, c=1451.1(2) pm, β=102.14(1)°, R=0.028 for 2573 F values and 86 variables. In both structure types most rare earth atoms have nine antimony neighbors forming tricapped trigonal prisms. The coordination polyhedra of the antimony atoms show a great variety, with a trigonal prism of rare earth atoms as one extreme case. The other extreme coordination of an antimony atom is a distorted octahedron formed by six antimony atoms. The differences and similarities of both structures are discussed. Chemical bonding within the antimony polyanions is analyzed on the basis of an extended Zintl-Klemm concept using bond-length-bond-strength relationships.  相似文献   

16.
The anion-excess ordered fluorite-related phase Ba4Bi3F17 has been synthesized by a solid state reaction of BaF2 and BiF3 at 873 K. The crystal structure of Ba4Bi3F17 has been studied using electron diffraction and X-ray powder diffraction (a=11.2300(2) Å, c=20.7766(5) Å, S.G. , RI=0.020, RP=0.036). Interstitial fluorine atoms in the Ba4Bi3F17 structure are considered to form isolated cuboctahedral 8 : 12 : 1 clusters. The structural relationship between Ba4Bi3F17 and similar rare-earth-based phases is discussed.  相似文献   

17.
The title compounds were prepared by arc-melting pre-annealed mixtures of Ti, Mo, and As. Both Ti2MoAs2 and Ti3MoAs3 adopt structures formed by the corresponding binary vanadium arsenides, V3As2 and β-V4As3. Ti2MoAs2 crystallizes in the tetragonal space group P4/m, with a=9.706(4) Å, c=3.451(2) Å, V=325.1(3) Å3 (Z=4), and Ti3MoAs3 in the monoclinic space group C2/m, with a=14.107(3) Å, b=3.5148(7) Å, c=9.522(2) Å, β=100.66(3)°, V=464.0(2) Å3 (Z=4). In both cases, the metal atoms form infinite chains of trans edge-condensed octahedra, and the As atoms are located in (capped) trigonal prismatic voids. While most metal atom sites exhibit mixed Ti/Mo occupancies, the Mo atoms prefer the sites with more metal atom and fewer As atom neighbors. Ti2MoAs2 and Ti3MoAs3 are metallic entropy-stabilized materials that decompose upon annealing at intermediate temperatures.  相似文献   

18.
Anodic voltammetry and electrolysis of the metallocenes ferrocene, ruthenocene, and nickelocene have been studied in dichloromethane containing two different fluorine-containing anions in the supporting electrolyte. The perfluoroalkoxyaluminate anion [Al(OC(CF3)3)4] has very low nucleophilicity, as shown by its inertness towards the strong electrophile [RuCp2]+ and by computation of its electrostatic potential in comparison to other frequently used electrolyte anions. The low ion-pairing ability of this anion was shown by the large spread in E1/2 potentials (ΔE1/2 = 769 mV) for the two one-electron oxidations of bis(fulvalene)dinickel. The hexafluoroarsenate anion [AsF6], on the other hand, reacts rapidly with the ruthenocenium ion and is much more strongly ion-pairing towards oxidized bis(fulvalene)dinickel (ΔE1/2 = 492 mV). In terms of applications of these two anions to the anodic oxidation of organometallic sandwich complexes, the behavior of [Al(OC(CF3)3)4] is similar to that of other weakly-coordinating anions such as [B(C6F5)4], whereas that of [AsF6] is similar to the more traditional electrolyte anions such as [PF6] and [BF4]. Additionally, the synthesis and crystal structure of [Cp2Fe][Al(OC(CF3)3)4] are reported.  相似文献   

19.
Elimination of the arsenic (III) impurity AsF3 from anhydrous hydrogen fluoride has been demonstrated using a bench-scale apparatus (∼500 mL of HF), with a Ag(II) salt AgFAsF6 as a mediator. In this process, AsF3 is oxidized by AgFAsF6 to AsF5. In the next step, AsF5 is eliminated from HF by reaction with NaF. The oxidizer, AgFAsF6, is reduced to AgAsF6 which is regenerated to AgFAsF6 by F2 in HF at room temperature. This method can reduce the arsenic content in HF from a few hundred ppm to the industrially required level (<3 ppm). The results for three other methods (distillation, oxidation by F2 gas, and oxidation by K2NiF6) are reported and compared with the AgFAsF6 method in a preliminary examination (using ∼4 mL of HF).  相似文献   

20.
The reactions between Ln(AsF6)3 (Ln: lanthanide) and excess of XeF2 in anhydrous HF (aHF) as a solvent yield coordination compounds [Ln(XeF2)3](AsF6)3 or LnF3 together with Xe2F3AsF6 or mixtures of all mentioned products depending on the fluorobasicity of XeF2 and LnF3 along the series. XeF2 in a basic aHF is able to oxidize Pr3+ to Pr4+ besides Ce3+ to Ce4+ and Tb3+ to Tb4+. The tetrafluorides obtained are weaker fluorobases as XeF2 and are immediately exchanged with XeF2 yielding Xe2F3AsF6 and LnF4. The analogous reaction between Ln(BiF6)3 and XeF2 in aHF yields [Ln(XeF2)3](BiF6)3, Ln: La, Nd. Raman spectra of the compounds [Ln(XeF2)n](AF6)3 (A: As, Bi) show that no XeF+ salts are formed. The interaction of XeF2 with metal ion is covalent over the fluorine bridge. Analogous reactions of Ln(AsF6)3 with AsF3 in aHF yield [Ln(AsF3)3](AsF6)3 which are stable in a dynamic vacuum at temperatures lower than 233 K. In reactions between M(AF6)2 (M: alkaline earth metal and Pb, A: As, Sb) and XeF2 in aHF as a solvent, compounds of the type [M(XeF2)n](AF6)2 were synthesized. Analogous reactions with AsF3 yield coordination compounds of the type [M(AsF3)n](AsF6)2. During the preparation of Mx(AsF6)x (M: metal in oxidation state x+) by the reaction between metal fluoride and excess of AsF5 in aHF it was found that HF could also act as a ligand to the metal ions (e.g. Ca(HF)(AsF6)2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号