首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fluorescent pH probe from dansyl chloride and thiosemicarbazide was easily prepared and fully characterized by 1H NMR, 13C NMR, LC-MS, Infrared spectra and elemental analysis. The probe exhibited high selectivity and sensitivity to H+ with a pK a value of 4.98. The fluorescence intensity at 510 nm quenched 99.5 % when the pH dropped from 10.88 to 1.98. In addition, the dansyl-based probe could respond quickly and reversibly to the pH variation and various common metal ions showed negligible interference. The recognition could be ascribed to the intramolecular charge transfer caused by the protonation of the nitrogen in the dimethylamino group.  相似文献   

2.
A fluorescent receptor, isocyanatopropyl trimethoxysilane grafted 9-amino acridine (AcI), was synthesized and characterized by elemental analysis, FTIR and NMR spectroscopy. Photophysical properties and pH-dependent fluorescence behavior of AcI were investigated and its complex stoichiometry with uranyl ion was elucidated. Change in fluorescence emission of AcI with pH of the solution was observed and pKa value was determined by using integrated emission intensity versus pH. It was found that AcI exhibited fluorescence enhancement, which can be attributed to an internal charge transfer (ICT) mechanism, upon titration with uranyl ions in mixture of ethanol-buffer solution while the fluorescence emission of AcI was not affected by addition of other divalent transition metal ions except mercury (II) ions. On the other hand, the both fluorescence and UV-vis titration measurements revealed unique selectivity for uranyl ions over the interfering mercury (II) ions. The spectrofluorometric titration clarified that uranyl interacted with AcI to form AcI 2(UO 2 2?+ )3 (2:3) complex structure with an apparent association constant of K?=?7.41?×?106 M?2/3. The interference effect of some cations on fluorescence enhancement exhibited by complex was also tested.  相似文献   

3.
In this study ground and excited states acidic dissociation constants of a recently synthesized Schiff base was obtained in a DMF:water mixture of 30:70 (v/v) using absorption and fluorescent spectra of the Schiff base in different pH values with the aid of chemometric methods. In addition, the fluorescent of the two kinds of tautomers of this Schiff base was investigated and the rate of tautomerization was obtained using rank annihilation factor analysis (RAFA). The effect of different kinds of surfactants such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 on fluorescence spectrum of the Schiff base in a DMF:water mixture of 2:98 (v/v) was investigated. CTAB increased the fluorescence intensity of the Schiff base while SDS and Triton X-100 had no significant effect on it. β-Cyclodextrin increased the fluorescence intensity of the Schiff base. Also the sensing behavior of this Schiff base toward metal ions was studied in DMF and ethanol by fluorescence spectroscopy. The Schiff base showed prominent fluorescent signal in the presence of Zn2+, whereas other metal ions failed to induce response and ground-state dissociation constant of the complex was determined by direct fluorimetric titration as a function of Zn2+ concentration.  相似文献   

4.

The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff’s base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6–311?+??+?G** level of theory, while the L?2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6–311?+??+?G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6–311?+??+?G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch “On–Off-On” via the replacement of Cu2+ by Ag+ ions, as proved experimentally.

  相似文献   

5.
The acyclic tridentate blue luminescent ligand (λex=300 nm, λem=415 nm) quinoline-2-carboxaldehyde 2-pyridylhydrazone, HL, 1, was recognized as a new fluorescent chemosensor for Pd2+. In alkaline methanol complete fluorescent quenching was observed in the presence of 2 equivalents of Pd2+ that was further reflected in the solid phase fluorescence microscopic study.Ligand formed 1:1 complexes with Ni2+, Cu2+, Zn2+, Pd2+ and 1:2 complexes with Co2+, Fe2+ as obtained from Job's plot of continuous variation. The binding constants of different metal complexes (Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Pd2+) were estimated by fluorescence titrations. The ligand can selectively extract significant amount of Pd2+ from the aqueous mixture of metal ions, and the extraction efficiency was increased from 80% to 95% with increase in the molar ratio of HL, 1, to Pd2+ from 1 to 3. No significant interference was observed up to 2-fold excess addition of Cu2+ and Zn2+ and 100-fold excess addition of Co2+, Fe2+ and Ni2+over the Pd2+ ion concentration (1.0×10−3 M).  相似文献   

6.
The parameters of Cun+ and Tan+ ions from the plasma of a vacuum spark with a voltage up to 2.5 kV and a current rise rate up to 2 × 1010 A/s are studied using the time-of-flight method. At the initial stage of the discharge, bursts of beams of accelerated multiply charged ions from the cathode flame have been detected. It is established that the charge state distribution and energy of a beam are controlled by the initial voltage U 0 of the capacitor. Upon an increase in this voltage, the average charge of copper ions attains the value +9, and the average charge of tantalum ions can be as high as +20, while the energy attains values of 150 and 350 keV, respectively. It is found that the average energy of ions with charge Z increases in proportion to the charge and is close to the energy eZU 0 which would have been acquired by ions accelerated in the electric field of the discharge gap.  相似文献   

7.
Some novel imidazole derivatives were developed for highly sensitive chemisensors for transition metal ions. Since these compounds are sensitive to different external stimulations such as UV irradiation, heat, increasing pressure and changing the environmental pH causing colour change and so they can be used as a ??multi-way?? optically switchable material. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg2+, Pb2+ and Cu2+ and this was suggested to result from the suppression of radiationless transitions from the n-??* state in the chemisensors. The existence of C-H??.O intramolecular hydrogen bonding in dmphnpi is confirmed by the Natural Bond Orbital analysis (NBO). The Mulliken, NBO charge analysis and the HOMO-LUMO energies were also calculated. The electric dipole moment (??) and the first-hyperpolarisability (??) value of the investigated molecules have been studied both experimentally and theoretically which reveal that the synthesized molecules have microscopic non-linear optical (NLO) behaviour with non-zero values. Ground and excited state DFT calculation were carried out in order to find out dipole moment and energy.  相似文献   

8.
It was previously shown that the hydrolysis of the (CuATP2? · OH2)2 dimeric complex to CuADP? and an inorganic phosphate occurs in a sequence of two rapid and irreversible steps. Along with the hydrolysis through a common intermediate product, (CuATP2?)2OH?-(DOH?), the OH? nucleophile at the Cu2+ ion is replaced by OH? at the positively charged phosphorus atom to form an IntK pentacovalent intermediate (step 1). A mathematical modeling of the kinetics of the hydrolysis catalyzed by the Cu2+ base metal ion in the presence of additional Mg2+ ions at two pH values, 6.48 and 6.71 (at the ascending branch of the dependence of the initial rate of the hydrolysis on the pH value) is performed. Additional ions affect only the pathway of coupling of the conformational conversion of DOH?. The rate constant for the forward reaction (IntK→ DOH?), k 1, increases from 2 · 107 L mol?1 min?1 in the absence of Mg2+ to 2.9 · 107 L mol?1 min?1 upon introduction of Mg2+ ions; rate constant of the reverse reaction IntK → DOH→, k ?1, decreases from 1 · 105 L mol?1 min?1 in the absence of Mg2+ to 3 · 104 L mol?1 min?1 in the presence of Mg2+. The relative concentrations of the intermediate products are demonstrated to change during the irreversible hydrolysis. In the presence of Mg2+, IntK emerges at much earlier stages of the hydrolysis, the fraction of formed IntK in the balance of NuP0 is substantially higher, and the growth of its relative concentration with time in the earlier stages of hydrolysis is much more dramatic.  相似文献   

9.
A series of simple thiocyanato complex ions have been investigated as their tetraphenylphosphonium and potassium salts. The binding energies of N, C and S were determined as well as those of the metals. From the first-mentioned data effective charge-values were estimated for the atoms of the ligands. For this purpose linear relations Eb = kq + Eb0 were used that had been previously established within a scheme having C1s (phenyl) as the internal standard.From the data thus obtained the effective charge on the metal atoms was estimated. For elements where we have sufficient data the same type of linear relation seems to he followed. Tentatively valid examples are Eb(Ni) = 6.74qNi + 848.3 eV and Eb(Pd) = 4.45qPd + 333.9 eV.In this interpretation the atoms of the metals are considered to be positively charged and surrounded by the negative charge of the electrons occupying the s band.It is further suggested for complexes with pronounced π backbonding (Pt(SCN)42?, Pd(SCN)42? and Hg(SCN)42?) that the C 1s binding energy measured for the carbon atom of the SCN? ligand is composed of the ionisation energy from the 1s level and an additional term corresponding to the intraligand π → π* transition.  相似文献   

10.
Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima (E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.  相似文献   

11.
The spectra of secondary ion emission under the bombardment of a B-doped Si target by multiply charged Si q+ ions (q = 1?C5) have been studied in the energy range of 1 to 10 keV per unit of charge. A multifold increase in the yield of secondary cluster Sk n + ions, multiply charged Si q/+ ion (q = 1?C3), and H+, C+, B+, Si2N+, Si2O+ is observed as the charge of the multiply charged ions increases. The increase in the yield of secondary ions with increasing charge of the multiply charged-ion charge is most significant for ions with relatively high ionization potentials.  相似文献   

12.

A new fluorescent bis(acridino)-macrocycle containing two allyl groups was synthesized and photophysically studied. Studies were carried out on metal ion recognition and selectivity-influencing effects including the determination of the relevant thermodynamic constants as logK and pKa. The proposed sensor molecule is recommended for the development of Zn2+-selective optochemical analyzers based on covalently immobilized ionophores as it has a unique pH-independent metal ion recognition ability, which is not influenced by anions and other potentially occurring metal ions in biological samples.

  相似文献   

13.
The compound [Fe2L(H2O)4] (ClO4)4.H2O which contains pairs of Fe3+ ions within a binucleating macrocycle derived from Schiff base condensation of 2,6-diacetylpyridine and 1,3-diamino-2-hydroxy-propane has been studied by magnetic susceptibility measurements and57Fe Mössbauer spectroscopy between 4.2 K and 300 K, and its crystal structure determined. The spectra show relaxation effects at all temperatures. Spectra taken at 4.2 K in applied fields of about 3 T showed thatV zz is positive and η~0. The spectra were fitted using a stochastic model of a magnetic hyperfine field relaxing parallel to thez axis, giving relaxation times of 10?9?10?10 s.  相似文献   

14.
Photophysical properties of a multidentate tripodal ligand, 5,5′-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La3+ and Er3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV ? visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H4L)]4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β110 = 32–34 and pLn in the range of 14–20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.  相似文献   

15.
Imbalance of zinc ion (Zn2+) in human body causes diseases like Alzheimer’s and Parkinson’s and therefore Zn2+ estimation in biological fluids has diagnostic values. Fluorescence “off-on” sensors have advantages of high sensitivity and in situ application over other sensors. A new fluorescent “off-on” Zn2+ sensor, N-benzoate-N′ salicylaldehyde ethynelediamine (L), has been synthesisied. In 1:1(v/v) CH3OH:PBS (PBS?=?phosphate buffer solution), L shows ca. 20 times enhancement in fluorescence intensity on interaction with Zn2+, due to snapping of photoinduced electron transfer (PET) process, which is selective over metal ions - Na+, K+, Ca2+, Ni2+, Cu2+, Cd2+, Hg2+ and Pb2+. These metal ions either individually or all together does not interfere the sensing ability of L towards Zn2+. A 1:1 interaction between L and Zn2+ ion with binding constant 104.25 has been established from spectroscopic data.  相似文献   

16.
The role of pH and calcium ions in the adsorption of an alkyl N-aminodimethylphosphonate on mild steel (E24) surfaces was investigated by XPS. Fe 2p3/2 and O 1s spectra show that the oxide/hydroxide layer developed on the steel surface, immersed in the diphosphonate solution (7 ≤ pH ≤ 13, without Ca2+) or in a filtered cement solution (pH 13, 15.38 mmol l−1 of Ca2+), consists of Fe2O3, covered by a very thin layer of FeOOH (goethite). The total thickness of the oxide/hydroxide layer is ∼3 nm and is independent of the pH and the presence/absence of Ca2+. In the absence of Ca2+ ions, the N 1s and P 2p spectra reveal that the adsorption of the diphosphonate on the outer layer of FeOOH takes place only for pH lower than the zero charge pH of goethite (7.55). At pH 7, the adsorbed diphosphonate layer is continuous and its equivalent thickness is ∼24 Å (monolayer). In the presence of Ca2+ ions, the C 1s and Ca 2p signals indicate that calcium is present on the steel surface as calcium phosphonate (and Ca(OH)2, in very small amount). The adsorption of the diphosphonate molecules on the steel surface is promoted in alkaline solution (pH > 7.55) by the doubly charged Ca2+ ions that bridge the O of goethite and the P-O groups of the diphosphonate molecules. The measured values for the Ca/P intensity ratio are in the range 0.75-1, which suggests that the diphosphonate molecules are adsorbed on steel forming a polymer cross-linked by calcium ions through their phosphono groups. In the presence of Ca2+ ions in alkaline solution, the adsorbed diphosphonate layer is discontinuous and the surface coverage is found to be ∼34%.  相似文献   

17.
A highly selective and sensitive fluorescent Zn2+ sensor N-(2-(benzo[d]thiazol-2-yl)phenyl)-2-((pyridin-2-ylmethyl)amino)acetamide (1) that derived from 2-(2′-aminophenyl)benzothiazole has been developed. In aqueous solution (HEPES/CH3CN=4/6, v/v, HEPES 20 mM, pH?=?7.4), sensor 1 displays highly selective recognition to Zn2+ over other metal ions with a distinct longer-wavelength emission enhancement. Sensor 1 binds Zn2+ through its amide form with a 1:1 binding stoichiometry, which switched on the excited-state intramolecular proton transfer (ESIPT). Graphical Abstract
A simple 2-(2′-aminophenyl)benzothiazole-based fluorescent “off-on” sensor for Zn2+ recognition in HEPES/CH3CN(4/6, v/v, HEPES 20 mM, pH?=?7.4) solution through switching on ESIPT has been developed.  相似文献   

18.
A new fluorescent probe for Mn2+ ion, (6E)-N-((E)-1,2-diphenyl-2-(pyridin-2-ylimino)ethylidene)pyridin-2-amine (L), has been synthesized from benzil and 2-amino pyridine and characterized. In 1:1 (v/v) CH3CN:H2O (pH 4.0, universal buffer) L exhibits fluorescent intensity with emission peak at λmax 360 nm on excitation with photons of 310 nm. Fluorescent intensity of L increases distinguishingly on interaction with Mn2+ ion compared to metal ions—Na+, K+, Ca2+, Mg2+, Ba2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and Ag+ individually or all together. The enhancement in fluorescent intensity is due to snapping of photoinduced electron transfer (PET) prevailed in free L. Fluorescence and UV/visible spectral data analysis shows that binding stoichiometry between Mn2+ and L is 1:1 with log β?≈?3.0. Both L and its Mn2+ complex were optimised using density functional theory (DFT) and vibrational frequency calculations confirm that both are at local minima on the potential energy surfaces.  相似文献   

19.
The influence of the solvent pH and of the presence of carbonic acid anions on the energy transfer from the Eu(III) and Tb(III) ions to a large namber of Ln(III) ions, as well as on the concentration quenching of the Dy(III) ions, is studied. It is shown that, when the anions are present in solution at a concentration by 2–4 orders of magnitude lower than that of the lanthanide ions, the energy transfer rates increase by 2–4 orders of magnitude, but the luminescence decay remains exponential. It is established that the rate constant for energy transfer (k t ) via the hydroxyl bridge increases with decreasing concentration of lanthanide ions in solution. In an alkalinized solution, (k t ) depends weakly on the initial water pH, because the concentration of hydroxo groups is governed by hydrolysis of water under the action of the lanthanide ions introduced into it. It is found that, at the 10?2 M concentration of lanthanide ions in solution, the values of (k t ) change by almost two orders of magnitude depending on the choice of an ion pair; however, these changes in no way correlate with the overlap integrals of spectra, calculated by adopting the Forster mechanism, and the inclusion of an interaction of higher multipoles does not improve the agreement with the experimental data. It is shown that, when the energy is transferred via the OH? bridge in solutions with a total concentration of Ln(III) ions of 10?4 M, the value of (k t ) increases up to 107 M?1 s?1 and becomes independent of the choice of pairs of Ln(III) ions. The dependence of (k t ) on the ratio of the dissociation constant for a binuclear complex and the probability of energy transfer between the ions within this complex are discussed. It is concluded that the change in this ratio explains the disappearance of the dependence of (k t ) on the choice of ions as their concentration in solution decreases, but does not explain all the observed changes in (k t ) if only the dipole-dipole mechanism of energy transfer between the ions in bridged complexes is considered.  相似文献   

20.
Effect of heavy (Pb2+, Cs+) and light (Na+) metal ions on the molecular-dynamic characteristics of type-I collagen in aqueous solution was studied using the method of dynamic light scattering. It was found that the dependence of the translational diffusion coefficient D t from pH solutions has a nonlinear form with a pronounced extremum close to the isoelectric point of the protein (pI 6.0). For pure aqueous solution of protein there is a maximum of D t in isoelectric point. For collagen solutions with the addition of heavy-metal salts the minimum of D t was observed near the isoelectric point. This fenomenon is connected with the formation of protein nanoclusters in solution. With concentration of heavy metal ions increasing translational diffusion coefficient Dt decreases, which shows on increasing of aggregation effect. The addition of sodium ions in aqueous solution of collagen containing heavy metal ions sharp decreasing of the translational diffusion of molecules is observed. That can be connected with the rise of scattering particles masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号