首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aniline chemical oxidative polymerisation (COP), which produces various polyaniline (PANI) and oligoaniline supra-molecular structures, can be regarded as an in situ self-assembly process. This review provides a brief introduction to recent work on the structural characters and self-assembly behaviours of oligomeric aniline chemical oxidation products; it is focused on the relationships between the oligomeric species and morphology of the final products such as PANI nanoparticles, nanofibres/rods, nanotubes or oligoaniline nanosheets, micro/nanospheres in aniline COP systems. Several mechanisms proposed as explanations for the formation of typical supra-molecular structures are discussed in order to illustrate the roles of aniline oligomers. This article concludes with our perspectives on future work remaining to be done to uncover the formation mechanism of supra-molecular structures constructed by aniline chemical oxidation products and their controllable synthesis.  相似文献   

2.
Aniline oligomers were prepared by the oxidation of aniline with p-benzoquinone in aqueous solutions of methanesulfonic acid (MSA) of various concentrations. Their molecular structures were assessed by Fourier transform infrared spectroscopy. The electrorheological (ER) behavior of their silicone oil suspensions under applied electric field has been investigated. Shear stress at a low shear rate, τ 0.9, was used as a criterion of the rigidity of internal structures created by the application of an electric field. It was established from the fitting of the dielectric spectra of the suspensions with the Havriliak–Negami model that dielectric relaxation strength, as a degree of polarization induced by an external field contributing to the enhanced ER effect, increases and relaxation time, i.e., the response of the particle to the application of the field, decreases when a higher molar concentration of MSA is used. The best values were observed for suspensions of the sample prepared in the presence of 0.5 M of MSA. This suspension creates stiff internal structures under an applied electric field strength of 2 kV mm?1 with τ 0.9 of nearly 50 Pa, which is even slightly of higher value than that obtained for standard polyaniline base ER suspension measured at the same conditions. The concentration of the MSA used in the preparation of oligomers seems to be a crucial factor influencing the conductivity, dielectric properties and, consequently, rheological behavior, and finally ER activity of their suspensions.  相似文献   

3.
The salts of bile acids (“bile salts”) self-assemble in aqueous solution, similar to classical amphiphiles. The micellization is not only driven by the hydrophobic effect, but also hydrogen binding. Moreover, instead of a small, hydrophilic head and a flexible, hydrophobic tail, bile salts are rigid, almost flat molecules with weakly separated hydrophobic and hydrophilic faces. This results in a complex self-assembly behaviour with very distinct aggregate properties. Some characteristics resemble the behaviour of classical amphiphiles, while others are very different and reminiscent of other classes of molecules, for example low-molecular weight gelators or chromonic materials. We review the peculiar properties of bile salt aggregates, concentrating on general trends rather than specific values and comparing them to classical amphiphiles.  相似文献   

4.
Functionalizing aliphatic polyester hydrogels with an aniline oligomer is a means of achieving electrically conductive and degradable hydrogels. To lower the aniline oligomer content while maintaining a high conductivity and to overcome the acidic degradation product from polylactide reported in our previous work, a series of electroactive and degradable hydrogels based on polycaprolactone (PCL) hydrogels and carboxyl‐capped aniline pentamer (CCAP) were synthesized by a simple coupling reaction at room temperature. The reaction was carried out between the hydroxyl groups of hydroxyethylmethacrylate in a photopolymerized glycidyl methacrylate (GMA)‐functionalized PCL‐poly(ethylene glycol)‐PCL degradable network and carboxyl group of CCAP, using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide as water‐condensing agent and 4‐dimethylaminopyridine as catalyst. The electroactivity of the hydrogels was verified by cyclic voltammetry, which showed three pairs of redox peaks. The electrical conductivities and swelling ratios of these hydrogels were controlled by the CCAP content, the poly(ethylene glycol) molecular weight in the macromer, and the crosslinking density of the hydrogels. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Circular dichroism spectroscopy has been used to study the self-assembly of two series of m-phenylene ethynylene oligomers in highly polar solvents. The helical conformation of shorter oligomer lengths was found to be stabilized in aqueous acetonitrile solutions, while longer oligomers began to interact intermolecularly. The intermolecular aggregation of the oligomers in aqueous solutions revealed a chain length dependent association that required the presence of a stable helical conformation. Evidence for intermolecular interactions is provided by Sergeants and Soldiers experiments in which the twist sense bias of a chiral oligomer is transferred to an achiral oligomer.  相似文献   

6.
Weak orienting medium: Self-assembly of alkaline salt of folic acid yielded a weak liquid-crystalline phase in an aqueous environment. This medium has the ability to discriminate enantiomers. The mesophase exists over a broad range and has the physical parameter dependent tunability of degree of alignment.  相似文献   

7.
Photodegradation of aniline in aqueous suspensions of microalgae   总被引:1,自引:0,他引:1  
The photodegradation of aniline was investigated using freshwater algae suspended in aqueous media under metal halide light (250 W). Four algal species were used: Nitzschia hantzschiana, Chlorella vulgaris, Chlamydomonas sajao and Anabaena cylindrica. Reactions were carried out under aerobic conditions. The photodegradation rate of aniline was accelerated by the algae. In the A. cylindrica suspensions, with cell density ranging from 2.5 x 10(5) cells mL(-1) to 6.5 x 10(6) cells mL(-1), the photodegradation rate of aniline was increased from 10% to 80% and rate constant k increased from 1.86 x 10(-3) min(-1) to 9.66 x 10(-3) min(-1). Reactive oxygen species were thought to be the main reason for the degradation of aniline. Hydroxyl radicals and singlet oxygen photogenerated in the algal suspensions were detected. The maximum singlet oxygen yield was 75 microM in the presence of 1.0 x 10(6) cells mL(-1)C. sajao. About 5 microM hydroxyl radicals were generated in the 4-h reaction. Oxygen played an important role in the formation of reactive oxygen species in the algal suspensions. The nature of the algae facilitating the photodegradation of aniline was also investigated.  相似文献   

8.
9.
Quantum mechanical density functional theory (DFT) calculations are reported for N,N'-bis(4'-hydroxyphenyl)-1,4-quinonediimine [henceforth referred to as the hydroxyl terminated trimer], a derivative of previously investigated aniline trimers. Calculations are also reported on all isomers, common oxidations states, and hydrochloride salts of this material. The significance of replacing terminal amino groups by hydroxyl groups is detailed. The hydroxyl terminated trimer has a calculated electron affinity larger than that of the corresponding amino terminated aniline trimer N,N'-bis(4'-aminophenyl)-1,4-quinonediimine. The electron affinity of the anti conformer of the hydroxyl terminated emeraldine base trimer is 0.059767 hartrees (37.5 kcal mol(-1)), whereas that of the amino terminated form is 0.052728 (33.1 kcal mol(-1)). The electron affinity of the anti conformer of the hydroxyl terminated emeraldine dihydrochloride salt trimer is 0.130546 hartrees (81.9 kcal mol(-1)), whereas that of the amino terminated dihydrochloride salt is only 0.118972 (74.7 kcal mol(-1)). Because previous work has suggested that a larger electron affinity in the salt form leads to improved effectiveness in the role of corrosion inhibitor, these high-level calculations suggest a new and superior material for this application.  相似文献   

10.
The aqueous self-assembly of methyl-terminated tri(oxyethylene)thiol-encapsulated gold nanoclusters of varying core size is demonstrated on micrometer scale Au/SiO2 interdigital electrodes. This self-assembly process consists of alternate exposures of the substrate to solutions of either an alpha,omega-dithiol or the gold nanoclusters, resulting in the deposition of these materials onto the electrode surface. A comparison of the procedure in both H2O and CHCl3 solvents shows that the assembly, as monitored by the electrical conductivity of the device, occurs more rapidly in the H2O system. This observation is complimented by XPS and UV/Vis measurements, which show that (1) the increased current is due to an increased amount of gold deposited on the surface under aqueous conditions and (2) the thiol exchange reaction occurs more rapidly in H(2)O in comparison to CHCl3.  相似文献   

11.
The self-assembly behavior of polyoxometalate (POM) macroanion-capped 3-nm-radius Pd (0) nanoparticles in aqueous solution is reported. Pd(0) nanoparticles are synthesized from reducing K(2)PdCl(4) by using Dawson-type V-substituted POM K(9)[H(4)PV (IV)W(17)O(62)] (HPV(IV)) clusters as the reductant and stabilizer simultaneously in acidic aqueous solutions. The starting molar ratio of K(2)PdCl(4) to HPV(IV) (R value) in solution is important to the formation of Pd nanoparticles. When R < 0.6, approximately 20-nm-radius Pd(0) colloidal nanocrystals are formed. When R > or = 0.6, HPV-capped (and therefore negatively charged) 3-nm-radius Pd(0) nanoparticles are formed, which can further self-assemble into stable, hollow, spherical, 30-50-nm-radius supramolecular structures in solution without precipitation, as confirmed by light scattering and transmission electron microscopy studies. This structure resembles the unique supramolecular structure formed by hydrophilic POM macroanions in polar solvents, which we refer to as "blackberry" structures. It is the first evidence that the blackberry formation can occur in hydrophobic nanoparticle systems when the surface of nanoparticles is modified to be partially hydrophilic. Counterions play an important role in the self-assembly of Pd nanoparticles, possibly providing an attractive force for blackberry formation, which is the case for blackberry formation in POM macroanionic solutions. Our results suggest that the blackberry formation is not a specific property of POM macroions but most likely a general phenomenon for nanoparticles with relatively hydrophilic surfaces and suitable sizes and charges in a polar solvent.  相似文献   

12.
The electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) and electron-rich 1,5-dialkoxynaphthalene (Dan) have been shown to complex strongly with each other in water due to the hydrophobic effect as modulated through the electrostatic complementarity of the stacked dimer. Previously, oligomers of alternating Ndi and Dan units, termed aedamers, were the first foldamers to employ intramolecular aromatic stacking to effect the formation of secondary structure of nonnatural chains in aqueous solution. Described here is the use of this aromatic-aromatic (or pi-pi) interaction, this time in an intermolecular format, to demonstrate the self-assembly of stable hetero duplexes from a set of molecular strands (1a-4a) and (1b-4b) incorporating Ndi and Dan units, respectively. A 1-to-1 binding stoichiometry was determined from NMR and isothermal titration calorimetry (ITC) investigations, and these experiments indicated that association is enthalpically favored with the tetra-Ndi (4a) and tetra-Dan (4b) strands forming hetero duplexes (4a:4b) with a stability constant of 350 000 M-1 at T = 318 K. Polyacrylamide gel electrophoresis (PAGE) also illustrated the strong interaction between 4a and 4b and support a 1-to-1 binding mode even when one component is in slight excess. Overall, this system is the first to utilize complementary aromatic units to drive discrete self-assembly in aqueous solution. This new approach for designing assemblies is encouraging for future development of duplex systems with highly programmable modes of binding in solution or on surfaces.  相似文献   

13.
We present the phase diagram and the microstructure of the binary surfactant mixture of AOT and C(12)E(4) in D(2)O as characterized by surface tension and small angle neutron scattering. The micellar region is considerably extended in composition and concentration compared to that observed for the pure surfactant systems, and two types of aggregates are formed. Spherical micelles are present for AOT-rich composition, whereas cylindrical micelles with a mean length between 80 and 300 ? are present in the nonionic-rich region. The size of the micelles depends on both concentration and molar ratio of the surfactant mixtures. At higher concentration, a swollen lamellar phase is formed, where electrostatic repulsions dominate over the Helfrich interaction in the mixed bilayers. At intermediate concentrations, a mixed micellar/lamellar phase exists.  相似文献   

14.
We present some semiempirical quantum chemistry calculations, geometric structures, charge distribution, gap energy, and enthalpy of formation (H f ) for aniline oligomers in the different oxidation states using the AM1 method. A linear relationship between calculated optical transition values and the experimental reported ones was found. The effect of the interaction between the chloride counterion and these molecules was analyzed and indicates a decrease both in H f of the aniline oligomers in the radical cation state and in E(SOMO-LUMO). The withdrawal of one electron from the reduced aniline tetramer to form a radical cation in the presence of chloride (Cl) yields to the radical cation band, similar to the polaron band in the polyaniline case. Contrary to the expected results, our calculations show that Cl was able to transfer about 80% of its charge to the oligomers.  相似文献   

15.
The oxidation kinetics of some para-substituted anilines by benzimidazolium fluorochromate (BIFC) have been studied in aqueous acetic acid media in the presence of perchloric acid. The reaction is first order with respect to both aniline and BIFC and is catalysed by a hydrogen ion. The rate data obey Hammett relationship. The products of oxidation are the corresponding azo benzenes. Based on the kinetic results and product analysis, a suitable mechanism has been proposed for the reaction of BIFC with anilines.  相似文献   

16.
Two kinds of homogeneously dispersed aniline oligomer assemblies, namely "cross" and "needle" morphologies, can be conveniently synthesized on a large scale in a near-neutral aqueous medium using sodium dodecylsulfate (SDS) as a surfactant. The effects of oxidant type, premixing time, amount of SDS, monomer concentration, and temperature on the final morphology were investigated in detail. A possible mechanism for the formation of both "cross" and "needle" structures is given.  相似文献   

17.
Nonradiative deactivation processes of excited aniline and its derivatives in aqueous solution were investigated by steady-state and time-resolved fluorescence measurements to reveal characteristic solvent effects of water on the relaxation processes of excited organic molecules. The magnitude of nonradiative rate (knr) of excited aniline derivatives increased significantly in water compared to that in organic solvents (cyclohexane, ethanol, and acetonitrile). The fluorescence lifetime measurements in organic solvent/H2O mixed solvents suggested that the fluorescence quenching in water was not due to exciplex formation but due to interactions with a water cluster. From temperature effect experiments on the fluorescence lifetime and quantum yield of aniline, N-methylaniline, and N,N-dimethylaniline, the apparent activation energies for the nonradiative deactivation rate in water were determined as 21, 30, and 41 kJ mol-1, respectively. Upon substitution of hydrogen atoms in the aromatic ring of aniline derivatives for deuterium atoms resulted in normal deuterium isotope effect in cyclohexane, i.e. knr decreased by deuterium substitution, while in water the same deuterium substitution led to an increase in knr (the inverse isotope effect). The inverse isotope effects implied that a direct internal conversion to vibrationally higher excited states in the electronically ground state is not a dominant mechanism but the transition to a close-lying energy level, e.g. the relaxation to charge transfer to solvent (ctts) state, would be associated with the quenching mechanism in water.  相似文献   

18.
The self-assembly of the protein hydrophobin, HFBII, and its self-assembly with cationic, anionic, and nonionic surfactants hexadecylterimethyl ammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), in aqueous solution have been studied by small-angle neutron scattering, SANS. HFBII self-assembles in solution as small globular aggregates, consistent with the formation of trimers or tetramers. Its self-assembly is not substantially affected by the pH or electrolytes. In the presence of CTAB, SDS, or C(12)E(6), HFBII/surfactant complexes are formed. The structure of the HFBII/surfactant complexes has been identified using contrast variation and is in the form of HFBII molecules bound to the outer surface of globular surfactant micelles. The binding of HFBII decreases the surfactant micelle aggregation number for increasing HFBII concentration in solution, and the number of hydrophobin molecules bound/micelle increases.  相似文献   

19.
Addition of a small amount of ethylene glycol oligomers (OEG), with the number of repeat units y = 2–4, in an aqueous solution leads to the contraction of both linear and cross-linked poly(acrylamide-co-acrylic acid) chains. The results present clear evidence for the screening effect of OEG on the ionic groups of the polymer chains. Measurements indicate that the pre-swollen poly (acrylamide-co-acrylic acid) gels immersed in aqueous OEG solutions are at equilibrium. However, as the molecular weight of OEG increases, these gels cannot attain their equilibrium swelling ratio due to the appearance of non-equilibrium structures. The stability of these structures increases as the initial swelling degree of the gels increases.  相似文献   

20.
The review presents a survey on the key ideas and recent investigations about the structure and the specific performance of synthetic antennary oligopeptides in fluid media. The accent is on the self-assembling phenomena in aqueous solutions of four-antennary oligoglycines [Glyn-NHCH2]4C. The newly acquired knowledge regarding the fine-tuning options for the onset, stability, and properties of the obtained supramolecular aggregates (tectomers) is discussed. The emerging application prospects regarding the design of nanostructured materials and super-regular coatings are identified and commented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号