首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent decades, nanotechnology has been empowered as a new and developing interdisciplinary region of science and innovation that coordinates material science and biology. Nanoscience and nanotechnology open up new streets of examination that are helpful in synthesizing novel nanomaterials with remarkable applications. Among different metal nanomaterials, silver nanoparticles (AgNPs) attracted the attention of researchers due to their versatile antibacterial characteristics and biological properties. Biogenically synthesizing AgNPs from plants and microorganisms seems to be a highly promising alternative for developing a technology that is both environmentally benign and fast. Plants and microorganisms' ability to synthesize AgNPs has mostly remained untapped, and the lack of investigation is due to the vast variety of plants and microorganisms. This review aims to describe the current progress in various synthetic techniques for AgNPs and their potential for antibacterial applications. It discusses biogenic synthetic approaches, the role of various metabolites in the growth processes of AgNPs with antibacterial implications, bactericidal mechanisms, and the influence of operational parameters on AgNPs synthesis. Furthermore, the present status, critical challenges, and future outlook of AgNPs will be explored, which will definitely affect their present and future scenarios. We believe that by focusing readers' attention on nature-inspired, biogenically synthesized AgNPs and their bactericidal applications, this review will enable them to formulate a new perspective.  相似文献   

2.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

3.
A convenient method for in situ synthesis of silver nanoparticles was developed to realize the multifunction of cotton. The silver nanoparticles were obtained through reduction of silver ions by cotton under basic condition at room temperature. The as-synthesized silver nanoparticles achieved the coloration of cotton fibers. Heating increased the color strength of cotton fibers with silver nanoparticles. Mercerization treatment as a common finishing process enhanced the properties of cotton fibers modified by silver nanoparticles. The mercerized cotton exhibited brighter color and had very good colorfastness to washing. The cotton fibers treated with in situ synthesized silver nanoparticles possess strong antibacterial activity with excellent washing durability.  相似文献   

4.
We report on an effective route to decorate titanium nanotube arrays (TiNT) with silver nanoparticles (AgNPs). In this method, surface-adsorbed antibody molecules serve as templates to bind silver ions by electrostatic interaction. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. This route also was successfuly applied to gold nanoparticles (starting from negatively charged metallic precursor ions). Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.
Figure
An effective protein-mediated route to decorate Ag nanoparticles (AgNPs) in TiO2 nanotube arrays (TiNT) is reported. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.  相似文献   

5.
Hydrothermal treatment of nano-structured wood, prepared by precision grinding, with cationic silver was found to give silver nanoparticles (Ag NPs) of 2–40-nm size range embedded in the wood tissue. The size and distribution of Ag NPs depended strongly on the starting silver ion concentration and reaction temperature. Higher temperature tended to give larger size and wider distribution. The obtained Ag NPs were characterized using various methods, including high-resolution transmission electron microscopy, UV–visible spectroscopy, and X-ray diffraction. The antibacterial effect of the product against Escherichia coli was evaluated by static and dynamic culture experiments, revealing that the Ag NPs-loaded nano-wood materials have great promise as antimicrobial agents against E. coli.  相似文献   

6.
《Arabian Journal of Chemistry》2020,13(12):8662-8670
New and improved approaches are urgently needed to fight the increasing number of multi-drug resistant bacteria. The antibacterial effect of silver nanoparticles (AgNPs) prepared by standardized chemical and biological syntheses is compered here. Biological systems included extracts of Opuntia ficus-indica mucilage and extracellular growth broth of Aspergillus niger and Bacillus megaterium. The nanoparticles were characterized by infrared spectroscopy, IR, and transmission electron microscopy. All of the AgNPs shared characteristic IR peaks and had an average size of 20–60 nm. The AgNPs were mainly spherical regardless of synthetic path. The synthesis based on the extracellular broth of the fungus, due to the highest biomass and active compounds concentration, resulted in a high yield of nanoparticle formation. These AgNPs also exhibited the highest inhibition zone against Salmonella typhimurium and Staphylococcus aureus. The syntheses reported here have no significant influence on AgNPs physical characteristics, as compared to literature, but represent processes with shorter reaction time. Additionally, the fungal based nanoparticles have superior antibacterial characteristics.  相似文献   

7.
Multiferroic materials based on lead-free ferroelectric materials have potential applications in the fabrication of next-generation devices. Herein, the sol–gel method is used to synthesize pristine and Cr-doped Bi0.5K0.5TiO3 nanocrystals. Density functional theory simulation is performed to elucidate the mechanism underlying the observed electronic and magnetic properties of the nanocrystals. In materials doped with 9?mol% Cr, the substitution of Cr in the Ti site decreases the optical band gap from 3.09?eV to 2.26?eV and induces ferromagnetism at room temperature. The saturation magnetization of the materials is approximately 0.18?μB/Cr at 5?K and can be attributed to the interplay of the unpaired electron counts of Cr3+ ions in the crystal field mechanism and Jahn–Teller effect. Pristine Bi0.5K0.5TiO3 samples exhibit weak ferromagnetism at room temperature, given the existence of the mixed valence states of Ti4+ and Ti3+ and the formation of O or Ti vacancies during sample growth. The present study provides deep insight into the induction of magnetism in ferroelectric materials doped with transition metals. Such materials have potential spintronic applications.  相似文献   

8.
9.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

10.
In this paper, grafted polyacrylamide from the surface of glass fibers was prepared by surface initiated atom transfer radical polymerization in order to control the matrix surface structure and properties. The uniform and stable grafted polymer layer was utilized to prepare silver ions complexes, and then the silver ions were reduced by AlLiH4 to form in situ silver nanoparticles. The structure, composition, properties and surface morphology of the modified glass fibers were characterized by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. The antibacterial activities of modified glass fibers against E. coli, B. subtilis and S. cerevisiae had been studied respectively by Shake Flask Method. The results show that the antibacterial ratio of Ag nanoparticles loaded glass fibers is significantly improved than that of Ag+ loaded, and the highest antibacterial ratio is 72.2% against E. coli.  相似文献   

11.
Ma  Zhengxin  Liu  Jie  Shen  Guixian  Zheng  Xuejing  Pei  Ying  Tang  Keyong 《Cellulose (London, England)》2021,28(10):6287-6303
Cellulose - Synthesis of nanocomposites containing silver nanoparticles (AgNPs) has drawn growing interest owing to their antimicrobial activity and tuneable physicochemical properties. In this...  相似文献   

12.
A facile, convenient and green method has been employed for the synthesis of silver nanoparticles (AgNPs) using dried biomass of a green alga, Chlorella ellipsoidea. The phytochemicals from the alga, as a mild and non-toxic source, are believed to serve as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of a surface plasmon resonance band at 436 nm and energy dispersive X-ray spectroscopy. The transmission electron microscopy images showed the nanoparticles to be nearly spherical in shape with different sizes. A dynamic light scattering study revealed the average particle size to be 220.8 ± 31.3 nm. Fourier transform infrared spectroscopy revealed the occurrence of alga-derived phytochemicals attached to the outer surface of biogenically accessed silver nanoparticles. The powder X-ray diffraction study revealed the face-centred cubic crystalline structure of the nanoparticles. The as-synthesized biomatrix-loaded AgNPs exhibited a high photocatalytic activity for the degradation of the hazardous pollutant dyes methylene blue and methyl orange. The catalytic efficiency was sustained even after three reduction cycles. A kinetic study indicated the degradation rates to be pseudo-first order with the degradation rate being 4.72 × 10−2 min−1 for methylene blue and 3.24 × 10−2 min−1 for methyl orange. The AgNPs also exhibited significant antibacterial activity against four selected pathogenic bacterial strains.  相似文献   

13.
She  Qiutian  Li  Jie  Lu  Yudong  Lin  Shan  You  Ruiyun 《Cellulose (London, England)》2021,28(17):10827-10840
Cellulose - Dialdehyde cellulose (DAC) has considerable potential as an effective metal nanoparticle support material for the preparation of highly sensitive SERS substrates. In this study, a SERS...  相似文献   

14.
Polyimide/silver composite films were successfully prepared by in situ polymerization. A precursor, AgNO3 was used as the source of the silver nanoparticles. The structure and morphology of resulting films were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Consequently, the silver nanoparticles were well dispersed in polyimide matrix. Meanwhile, thermal properties from thermal gravimetric analyses (TGA) and mechanical properties from tensile test which confirmed composites were kept good performance as compared to pure polyimide. In addition, the antimicrobial activity of polyimide/silver composite films against three different bacteria, B. subtilis, S. aureus, and E. coil, illustrated excellent activity. This composite is potential useful as antimicrobial material with good thermal performance in a wide variety of biomedical and general use applications.  相似文献   

15.
Silver nanoparticles were synthesized using clove extract (CE). Scanning transmission electron microscopy (STEM) revealed the morphology of the metallic Ag nanoparticles obtained via the clove extract synthesis (Ag NPs‐CE), which had a uniform distribution and average sizes varying from 10 nm to 100 nm. Fourier transform infra‐red (FTIR) spectroscopy showed that clove eugenol acts as a capping and reducing agent being adsorbed on the surface of Ag NPs‐CE, enabling their reduction from Ag+ and preventing their agglomeration. Formation of the Ag0 structure is also confirmed in the FTIR spectrum by the presence in the Ag NPs‐CE sample of the –C=O and –C=C vibrations at wavenumbers 1600 and 2915 cm‐1, respectively. Antibacterial and antifungal tests using three strains of bacteria and one fungi strain showed that the Ag NPs‐CE performed better compared to pure clove extract (CE) sample.  相似文献   

16.
Research on Chemical Intermediates - Silver nanoparticles (AgNPs) synthesized on the surface of chitosan (CS) films using ultraviolet (UV) and natural light irradiation reduction methods were...  相似文献   

17.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

18.
Silver nanoparticles in the bulk solution were obtained by the potentiostatic electrolysis in undivided cell using silver anode at the potential of the mediator reduction (tetraviologen calix[4]resorcine) at room temperature in DMF/0.1 M Bu4NPF6 media. The metal nanoparticles aggregate to form larger particles eventually.  相似文献   

19.
20.
The tamarind fruit shell powder (TFSP) from agricultural waste was modified by in situ generation of silver nanoparticles (AgNPs) using the one-step hydrothermal method and characterized by SEM, EDX, FTIR spectral, XRD, and antibacterial tests. SEM analysis indicated the in situ generation of AgNPs with an average size of 90?nm. FTIR analysis proved no structural changes between unmodified and modified TFSP. XRD analysis indicated in situ generation of AgNPs in the modified TFSP. Further, the TFSP with in situ generated AgNPs inhibited the growth of bacteria and hence can be used as antibacterial low-cost filler in making biocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号