首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the results of the experiment on studying the multifractal structure (with inhomogeneity sizes from tens to hundreds of meters across the Earth’s magnetic field) of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power HF radio waves. The experimental studies were performed on the basis of the “Sura” heating facility with the help of radio sounding of the disturbed region of the ionospheric plasma by signals from the Earth’s orbital satellites. The influence of the magnetic zenith effect on measured multifractal characteristics of the small-scale artificial turbulence of the midlatitude ionosphere was examined. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionospheric turbulence under natural conditions. This result is explained by the fact that the scattering of signals by weak quasi-isotropic small-scale inhomogeneities of the electron number density in a thick layer with a typical size of several hundred kilometers above the region of reflection of high-power HF radio waves gives the major contribution to the observed amplitude fluctuations of received signals. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, the nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron number density was detected. Such a fairly well ordered structure of the turbulence is explained by the influence of the magnetic zenith effect on the generation of anisotropic small-scale artificial turbulence in a thin layer having a typical size of several ten kilometers and located below the pump-wave reflection height in the upper ionosphere.  相似文献   

2.
In this paper an approach is given to the generation of slow magnetoacoustic waves by fast ones and vice versa and to the reflection of magnetoacoustic waves at plasma and magnetic field inhomogeneities. The cases of very strong and very weak fields as well as the case when the Alfvén velocity is of the order of the sound velocity are closely investigated. General conclusions are drawn on the mutual transformation of magnetoacoustic waves.  相似文献   

3.
Starting from nonlinear evolution equations of a three-dimensional extra-ordinary wavepacket in a magnetized plasma and introducing a correlation function, equations are derived that describe interaction of a coherent low-frequency magneto-acoustic wave with a turbulent spectrum of high frequency extra-ordinary waves. These equations are used to derive the dispersion relation for a low frequency magnetoacoustic wave in the presence of a spectrum of turbulent high frequency extra-ordinary waves. In the narrow spectrum case, it is found that a small but finite spread in the spectrum of turbulence has a stabilizing influence on the instability which exists for vanishing spectral width. In the wide spectrum case, the effect of a weak turbulent spectrum of extra-ordinary waves is to produce a slight shift in frequency of the coherent low frequency magneto-acoustic wave and to damp or excite the wave.  相似文献   

4.
The stability problem of Kolmogorov spectra of a weak turbulence is analytically solved for the first time in the framework of a three-wave kinetic equation. The spectrum of isotropic perturbations of a stationary not-in-equilibrium distribution is found for the capillary waves on a shallow water surface. It is shown, in the isotropic case, that the Kolmogorov solution is stable with respect to excitations local in k-space. The perturbations drift to the damping region without growth of the magnitude. The structural instability of the isotropic spectrum is found by computer simulation: a small pumping anisotropy causes the spectrum to be essentially anisotropic within the inertial range.  相似文献   

5.
Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wave number ranges in a Beta > or approximately = 1 plasma. The k(-5/3) inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfvén speed. At smaller wavelengths krho(i) > or = 1 the electric spectrum is enhanced and is consistent with the expected dispersion relation of short-wavelength kinetic Alfvén waves. Kinetic Alfvén waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluidlike nature of the solar wind.  相似文献   

6.
New analytical expressions for the temporal power spectral models of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak non-Kolmogorov turbulence. They consider the finite turbulence inner and outer scales, and have a general power law value in the range of 3–4 instead of the standard power law value of 11/3. The results derived in this work can reduce correctly to the previously published analytic expressions for the case of plane and spherical waves propagation through Kolmogorov turbulence case. These results are useful for the understanding the potential impact of derivations from the standard Kolmogorov spectrum.  相似文献   

7.
A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth’s surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.  相似文献   

8.
The existence and propagation of fast and slow magnetoacoustic surface waves (MASW) is investigated in our work by taking a theoretical model of a static plasma slab as the middle layer with a moving plasma region at the top and neutral gas medium as the bottom layer. Applying linear MHD, the dispersion relation is obtained and the propagation of magnetoacoustic surface waves, in the compressional limit for steady flow and for different values of dimensionless wave numbers, is analyzed. Steady flow of plasma along a structured atmosphere may cause enhancement of existing surface modes, disappearance of some modes and generation of new surface wave modes. The possible regions for the propagation of fast and slow surface and body waves for different mass density ratios and magnetic field ratios and with a small flow velocity are studied. Our discussion may help in analyzing more complicated cases.  相似文献   

9.
In the solar corona waves and oscillatory activities are observed with modern imaging and spectral instruments. These oscillations are interpreted as slow magneto-acoustic waves excited impulsively in coronal loops. This study explores the effect of steady plasma flow on the dissipation of slow magneto-acoustic waves in the solar coronal loops permeated by uniform magnetic field. We have investigated the damping of slow waves in the coronal plasma taking into account viscosity and thermal conductivity as dissipative processes. On solving the dispersion relation it is found that the presence of plasma flow influences the characteristics of wave propagation and dissipation. We have shown that the time damping of slow waves exhibits varying behavior depending upon the physical parameters of the loop. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm−2 s−1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction below to the transition region.  相似文献   

10.
11.
Li G  Miao B  Hu Q  Qin G 《Physical review letters》2011,106(12):125001
The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.  相似文献   

12.
Within the framework of the Neuringer-Rosenzweig equations, the solutions describing transverse linearly polarized and longitudinal plane-polarized magnetoacoustic waves are obtained for magnetizable liquids with an arbitrary orientation of the wavevector and the magnetization vector. In the general case, the group velocity vector of magnetoacoustic waves has a component orthogonal to the wavevector. For the solutions obtained here, the velocity of sound decreases from the maximal value for a wave propagating along the magnetization vector to the minimal value corresponding to a wave propagating at right angles to the magnetization vector. Exact solutions of the equations for magnetizable liquids are obtained in the form of the Riemann waves which are transformed into the magnetoacoustic waves under investigation for small perturbations of the parameters of the liquid and magnetic field.  相似文献   

13.
We present a numerical analysis of an incompressible decaying magnetohydrodynamic turbulence run on a grid of 1536{3} points. The Taylor Reynolds number at the maximum of dissipation is approximately 1100, and the initial condition is a superposition of large-scale Arn'old-Beltrami-Childress flows and random noise at small scales, with no uniform magnetic field. The initial kinetic and magnetic energies are equal, with negligible correlation. The resulting energy spectrum is a combination of two components, each moderately resolved. Isotropy obtains in the large scales, with a spectral law compatible with the Iroshnikov-Kraichnan theory stemming from the weakening of nonlinear interactions due to Alfvén waves; scaling of structure functions confirms the non-Kolmogorovian nature of the flow in this range. At small scales, weak turbulence emerges with a k{perpendicular}{-2} spectrum, the perpendicular direction referring to the local quasiuniform magnetic field.  相似文献   

14.
Experiments and theoretical investigations have shown that the atmosphere turbulence exhibits both anisotropic and non-Kolmogorov properties. In this paper, based on the anisotropic generalized von Karman spectrum and the Rytov approximation theory, new expression for the irradiance scintillation index of optical waves is derived for Gaussian beam propagating through weak anisotropic non-Kolmogorov turbulence. Compared with previously published results, it considers simultaneously the asymmetry property of turbulence cells or eddies in the orthogonal xy-plane, the general spectral power law in the range 3–4 instead of constant value of 11/3 for the Kolmogorov turbulence, and the finite turbulence inner and outer scales. Two anisotropic factors are introduced to parameterize the anisotropy of turbulence cells or eddies in horizontal and vertical directions. In the special cases of these two anisotropic factors equaling one and the finite turbulence inner and outer scales equaling separately zero and infinite, the derived expression can reduce correctly to the previously published results. Calculations are performed to analyze the derived results.  相似文献   

15.
ABSTRACT

The propagation of magnetoacoustic (fast magnetohydrodynamic) waves in pair-ion (PI) fullerene plasma is studied in the linear and nonlinear regimes. The pair-ion (PI) fullerene plasma is theorized as homogeneous, magnetized, warm and collisionless. Employing multi-fluid magnetohydrodynamic model, the dispersion relation is obtained and wave dispersion effects which appear through ion inertial length are discussed. Using reductive perturbation technique (RPT), the Korteweg–de Vries (KdV) equation is derived and its solution for small but finite amplitude magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is presented. The compressive magnetoacoustic soliton (i.e. positive potential pulse) propagating with super Alfvénic speed is obtained in magnetized PI fullerene plasma. The variations in the amplitude and width of the magnetoacoustic soliton structures are also illustrated by using numerical values of the plasma parameters such as ions' density, temperature difference between fullerene ions and magnetic field intensity, which have been taken from the PI plasma experiments already published in the literature.  相似文献   

16.
The scattering of electromagnetic waves in the ionospheric plasma under weak turbulence is considered. A relation between the scattered radiation spectrum and the plasma turbulence spectra is obtained. This relation can serve as a basis for the investigation of turbulence in a nonequilibrium ionospheric plasma.Institute of Terrestrial Magnetism and Radio Waves, Russian Academy of Sciences, Troitsk, Moscow region. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 38, No. 6, pp. 543–550, June, 1995.  相似文献   

17.
A new phenomenon was discovered on the basis of analysis of the Interball project data. A hot plasma flow is thermalized through the formation of “long-operating” vortex streets and local discontinuities and solitons in a distributed region over polar cusps. Plasma percolation through the structured boundary and secondary reconnection of fluctuating magnetic fields in a high-latitude turbulent boundary layer account for the main part of solar wind plasma inflow into the magnetospheric trap. Unlike local shocks, the ion thermalization is accompanied by the generation of coherent Alfvén waves on the scales ranging from ion gyroradius to the radius of curvature of the averaged magnetic field, as well as by the generation of diamagnetic bubbles with a demagnetized heated plasma inside. This “boiling” plasma has a frequency region where the spectrum is different from the Kolmogorov law (with slopes 1.2 and 2.4 instead of 5/3 or 3/2). The fluctuation self-organization in the boundary layer (synchronization of three-wave decays) was observed on certain frequency scales.  相似文献   

18.
The pressure spectrum in homogeneous steady turbulence is studied using direct numerical simulation with resolution up to 1024(3) and the Reynolds number R(lambda) between 38 and 478. The energy spectrum is found to have a finite inertial range with the Kolmogorov constant K = 1.65+/-0.05 followed by a bump at large wave numbers. The pressure spectrum in the inertial range is found to be approximately P(k) = B(p)epsilon;(4/3)k(-7/3) with B(p) = 8.0+/-0.5, and followed by a bump of nearly k(-5/3) at higher wave numbers. Universality and a new scaling of the pressure spectrum are discussed.  相似文献   

19.
The propagation of Alfven and magnetoacoustic waves in a cold magnetized plasma to great distances from the expanding plasma cloud that is the source of these waves is investigated. Allowance is made for back-ground-plasma permittivity anisotropy, which leads to Alfven-and magnetoacoustic-wave interaction and channeling along the external magnetic field.Moscow Engineering-Physics Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 36, No. 9, pp. 882–891, September, 1993.  相似文献   

20.
It is shown that a metal current-carrying cylinder immersed into a cold magnetized plasma is a waveguide structure, in which coupled bulk ordinarily polarized and surface extraordinarily polarized waves can propagate along the azimuthal direction. Their interaction, stipulated by the fact that besides the longitudinal component, the external magnetic field has also a weak azimuthal component, is studied. Analytical expressions for the corrections to the eigenfrequency of these waves, stipulated by the effect of a constant azimuthal magnetic field, are obtained for the case of a uniform plasma density. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 2, pp. 122–135, February 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号