首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this short letter, we describe the effects of low temperature on the Metal-Enhanced Fluorescence (MEF) phenomenon. Fluorophores close to Silver Island Films (SiFs) show on average two- to ten-fold enhancements in their fluorescence signatures at room temperature. However, at 77 K, we have observed that MEF is even more pronounced as compared to an identical glass control sample. We also demonstrate that the further enhancements in MEF occur at low temperature over a range of visible wavelengths for different fluorophores, for both SiFs and 20 nm surface deposited gold colloids.  相似文献   

2.
In this letter we report further findings on the ability of an applied direct current to modulate Metal-Enhanced Fluorescence (MEF). Fluorophores in close-proximity to just-continuous silver films (JCS) show significantly enhanced fluorescence intensities. However, when a current is applied to the films, the enhanced fluorescence can be gated in a manner that depends on both the fluorophore concentration, the magnitude of the applied current and the extent of the protein mono to multi-layer surface coverage. Our results are consistent and indeed further support our previous hypothesis and model that fluorophore-metal near-field interactions can be influenced by an applied direct current.  相似文献   

3.
In this Rapid Communication, we report the first observation of Metal-Enhanced singlet oxygen generation (ME1O2). Rose Bengal in close proximity to Silver Island Films (SiFs) can generate more singlet oxygen, a three-fold increase observed, as compared to an identical glass control sample but containing no silver. The enhanced absorption of the photo-sensitizer, due to coupling to silver surface plasmons, facilitates enhanced singlet oxygen generation. The singlet oxygen yield can potentially be adjusted by modifying the choice of MEF (Metal-Enhanced Fluorescence) & MEP (Metal Enhance Phosphorescence) parameters, such as distance dependence for plasmon coupling and wavelength emission of the coupling fluorophore. This is a most helpful observation in understanding the interactions between plasmons and lumophores, and this approach may well be of significance for singlet oxygen based clinical therapy.  相似文献   

4.
We report the first findings of Metal-Enhanced Fluorescence (MEF) from modified plastic substrates. In the past several years our laboratories have reported the favorable effects of fluorophores in close proximity to silver nanoparticles. These effects include, enhanced fluorescence intensities, (increased detectability), and reduced lifetimes, (enhanced fluorophore photostability). All of these reports have featured silver nanostructures and fluorophores which have been immobilized onto clean glass or quartz surfaces. In this report we show how plastic surfaces can be modified to obtain surface functionality, which in turn allows for silver deposition and therefore metal-enhanced fluorescence of fluorophores positioned above the silver using a protein spacer. Our findings show that plastic substrates are ideal surfaces for metal-enhanced phenomena, producing similar enhancements as compared to clean glass surfaces. Subsequently, we speculate that plastic substrates for MEF will find common place, as compared to the more expensive and less versatile traditional silica based supports.  相似文献   

5.
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.  相似文献   

6.
The first observation of Metal-Enhanced Fluorescence (MEF) from large gold colloids is presented. Gold colloids, 40 and 200 nm diameter, were deposited onto glass substrates in a homogeneous fashion. The angular-dependent fluorescence emission of FITC-HSA, adsorbed onto gold colloids, was measured on a rotating stage which was used to evaluate MEF at all spatial angles. The emission intensity of FITC-HSA was found to be up to 2.5-fold brighter than the emission on bare glass substrates at an angle of 270 degrees. This is explained by the Radiating Plasmon Model, whereby the combined system, composed of the fluorophore and the metal colloids, emits with the photophysical characteristics of the fluorophore, after the excitation and the partial radiationless energy transfer between the excited states of the fluorophore and the surface plasmons of the gold colloids. The fluorescence enhancement was found to be higher with 200 nm gold colloids as compared to 40 nm colloids due to the increased contribution of the scattering portion of the 200 nm gold colloid extinction spectrum. These observations suggest that gold colloids could be used in MEF applications, offering more stable surfaces than the commonly used silvered surfaces, for applications requiring longer term storage and use.  相似文献   

7.
分别以苯氧乙酸和对苯二甲酸为阴离子配体,以邻菲罗啉为中性配体,稀土铕离子为中心体,合成了两种三元稀土铕配合物Eu(Phen)L3(L=苯氧乙酸)和Eu2(Phen)2L3’(L’=对苯二甲酸)。利用还原法制备纳米银溶胶,采用改进的Stber法在银纳米颗粒外面包裹二氧化硅,通过控制正硅酸四乙酯(TEOS)的滴加时间和滴加量以控制二氧化硅壳层的生长厚度,得到Ag@SiO2核壳结构颗粒。通过该核壳结构颗粒与DMF溶解的稀土铕配合物的相互作用,得到核壳型Ag@SiO2荧光纳米复合物。结果表明,所得纳米银粒径为50 nm左右,包覆的SiO2壳层厚度约为12 nm。SiO2包覆的纳米银对两种铕配合物的荧光发射有明显的增强作用。  相似文献   

8.
We describe a fundamental observation in Metal-Enhanced Fluorescence (MEF), which has become a leading technology in the life sciences today, namely, how the lifetime of fluorophores near-to metallic plasmon-supporting silver islands/nanoparticles, modulates as a function of excitation power irradiance. This finding is in stark contrast to that observed in classical far-field fluorescence spectroscopy, where excitation power does not influence fluorophore radiative decay/lifetime.  相似文献   

9.
Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties.
Graphical abstract ?
  相似文献   

10.
Silver nanoparticles were synthesized by chemical reduction of silver ions by sodium borohydride in the presence of poly-(N)-vinyl-2-pyrrolidone in solution of short chain alcohols. The nanoparticles are stable in 2-propanol, and the average diameter of the Ag colloid obtained in this solvent is about 6 nm. The photophysical properties of acridinium and coumarin dyes in 2-propanol are affected by the presence of silver nanoparticles. The interaction of silver nanoparticles with acridinium derivative leads to a spectral change of its intramolecular charge transfer (ICT) absorption band. The dye emission increases suddenly with the initial addition of the Ag metal nanoparticles, but at a high concentration of the colloid, static fluorescence quenching occurs with a progressive decrease of the fluorescence efficiency. Amino coumarin fluorescence is only quenched by the silver nanoparticles in solution.  相似文献   

11.
Shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) as a new member of Raman technique garnered great attention among scientific community. In this work, we used an improved experimental setup to float the bare silver nanoparticles in air with the help of extraneous airflow, and used atomic layer deposition (ALD) method to coat ultra‐thin inert shell without pinholes. Under optimal conditions, we successfully prepared three kinds of SHINERS NPs (Ag@Al2O3, Ag@SiO2 and Ag@TiO2) in large quantity without pinholes. The ultra‐thin inert shell maintains the SERS activity of silver nanoparticles for long period of time. Transmission electron microscopy (TEM) images confirm the uniform coating of shell material on silver nanoparticles. Finally, the as‐prepared SHINs have been applied to detect various samples to demonstrate the applications. The presented ALD method offers a unique way to coat ultrathin shell (1–10 nm) on metal nanoparticles in large quantity (1–10 g) for practical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Using T-matrix method, plasmon resonance properties of metal core–shell nanoparticles are systematically investigated. It is shown that dielectric/metal core–shell structure may be excited stronger at resonance than metal/dielectric and hetero-metal ones, but the resonance states are extremely sensible to the layers thickness. For three-layer nanospheres, resonance properties will be dominated by a sub-10 nm silver outermost shell, while only weakened by a silica one. Finally, tiny eccentric distance between the centers of core and shell in eccentric two-layer nanoparticles may fundamentally change the resonance mode of nanoparticles, and results in higher local electrical field enhancement than concentric nanospheres.  相似文献   

13.
La0.45Ce0.45F3:Tb (10 mol% Tb) nanoparticles was synthesized via sonochemical method and then coated with silica (SiO2) shells through a microemulsion process, resulting in the formation of core/shell structured LaCeF3:Tb/SiO2 nanoparticles. The obtained core/shell LaCeF3:Tb/SiO2 nanoparticles are spherical and uniform in size (average size about 60 nm), strongly fluorescent, and long fluorescence lifetime (1.87 ms). This kind of nanoparticles was water-soluble, which could be applied in biological labeling and other fields.  相似文献   

14.
Magnetic core/shell (CS) nanocomposites (MNCs) are synthesized using a simple method, in which a magnesium ferrite nanoparticle (MgFe2O4) is a core, and an amorphous silicon dioxide (silica SiO2) layer is a shell. The composition, morphology, and structure of synthesized particles are studied using X-ray diffraction, field emission electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), scattering electrophoretic photometer, thermogravimetric analysis (TGA), and Mössbauer spectroscopy. It is found that the MgFe2O4/SiO2 MNC has the core/shell structure formed by the Fe?O–Si chemical bond. After coating with silica, the MgFe2O4/SiO2 MNC saturation magnetization significantly decreases in comparison with MgFe2O4 particles without a SiO2 shell. Spherical particles agglomerated from MgFe2O4 nanocrystallites ~9.6 and ~11.5 nm in size function as cores coated with SiO2 shells ~30 and ~50 nm thick, respectively. The total size of obtained CS MNCs is ~200 and 300 nm, respectively. Synthesized CS MgFe2O4/SiO2 MNCs are very promising for biomedical applications, due to the biological compatibility of silicon dioxide, its sizes, and the fact that the Curie temperature is in the region required for hyperthermal therapy, 320 K.  相似文献   

15.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

16.
Bactericidal activity of high concentration Ag nanoparticles immobilized on surface of an aqueous sol–gel silica thin film was investigated against Escherichia coli and Staphylococcus aureus bacteria. Size of the surface nanoparticles was estimated in the range of 35–80 nm by using atomic force microscopy. Due to accumulation of the silver nanoparticles at near the surface (at depth of 6 nm and about 40 times greater than the silver concentration in the sol), the synthesized Ag–SiO2 thin film (with area of 10 mm2) presented strong antibacterial activities against E. coli and S. aureus bacteria with relative rate of reduction of the viable bacteria of 1.05 and 0.73 h−1 for initial concentration of about 105 cfu/ml, respectively. In addition, the dominant mechanism of silver release in long times was determined based on water diffusion in surface pores of the silica film, unlike the usual diffusion of water on the surface of silver-based bulk materials. Therefore, the Ag nanoparticles embedded near the surface of the SiO2 thin film can be utilized in various antibacterial applications with a strong and long life activity.  相似文献   

17.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

18.
Luminescent core-shell europium(III)-silica nanoparticles were prepared using europium(III) chelate core structure and polyvinylpyrrolidone synthesis strategy for silica shell. Europium(III):naphtoyltrifluoroacetone:trioctylphosphineoxide complex was spontaneously agglomerated from organic solvent to water. Polyvinylpyrrolidone was adsorbed onto the core structure and stable silica shell was synthesized using tetraethylorthosilicate. Nanosized particles with a diameter of 71 ± 5 nm and 11 nm shell thickness were obtained with fluorescence decay rate of 517 μs and excitation and emission wavelengths of 334 and 614 nm, respectively.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Ag@SnO2 core-shell nanoparticles dispersed in poly-(vinyl) alcohol films were fabricated on glass substrate by employing a dip-coating technique. Synthesis of Ag@SnO2 nanoparticles with core-shell morphology is carried out by a soft-chemical technique in aqueous phase at 60°C. Formation of core-shell structure is monitored by the red-shift of the surface plasmon band of Ag nanoparticles (from 390 to 410 nm) in the UV-visible spectrum. These nanoparticles are deposited on the glass substrate. The structure and morphology of these films were investigated by X-ray diffraction technique and field-emission transmission electron microscopy, respectively. Optical properties of these pseudo-solids were studied by UV-visible spectroscopy. Surface plasmon spectrum of the core-shell nanoparticles film remained unaltered with increase in the number of layers. However, silver nanoparticles films have shown peak broadening and development of additional peaks with increase in the number of layers. Our investigations showed that the surface plasmon band of the silver nanoparticles could be preserved by controlled deposition of the tin dioxide shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号