首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
A. Nojima 《Surface science》2007,601(14):3003-3011
We have used density functional theory to investigate hydrogen adsorption and diffusion on a W(1 1 0) surface. Hydrogen adsorption structures were examined from low coverage to one monolayer, and a threefold hollow site was found to be the most stable site at all coverages. In contrast to previous assertions, the work function decrease is not due to electron transfer from the hydrogen atoms to the W surface, but due to electron depletion at the vacuum region above the hydrogen atoms. Hydrogen atoms can diffuse via short-bridge sites and long-bridge sites at a coverage of θ = 1.0. Although the calculated activation energy for hydrogen diffusion via a short-bridge site is as small as 0.05 eV, field emission microscope experiments have shown that the activation energy for hydrogen diffusion is about 0.20 eV, which agrees fairly well with our calculated value of the activation energy via a long-bridge site. This discrepancy can be related to hydrogen delocalization on the W(1 1 0) surface, which has been suggested by electron energy loss spectroscopy experiments.  相似文献   

2.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

3.
On low index nickel surfaces, repulsive interactions between atomic oxygen and CO drive the phase separation of these species into oxygen-rich and CO-rich islands. Because these adsorbates interact differently with crystallographic steps, the size and the structure of these islands are modified on stepped surfaces. We have monitored coadsorption-induced changes in the distribution of CO with IRRAS, observing six different CO stretching bands which are assigned to distinct local chemisorption environments. When oxygen fully saturates sites along the step edge, the steps are completely blocked from CO adsorption and virtually all the CO population on the terraces shifts from atop to bridge sites. This terrace site shift is similarly accomplished by atomic oxygen chemisorbed at terrace sites. From these coadsorption-induced changes in CO site distributions, constrained by the 10 Å terrace width, we conclude the through-metal O---CO interaction responsible for this CO site shift must be operative over a range of 5 Å. At θo = 0.18 ML, when oxygen occupies, but does not fully saturate the step edge, a new CO adsorption site is created, with a characteristic frequency of 1750 cm−1. This new site is assigned to CO bonded to kinks along the step edge based upon its low intensity ( geometric kink density), enhanced binding strength and sensitivity to oxygen coverage. At higher oxygen coverages, compression of the CO adlayer is observed, with CO shifting to asymmetric bridge sites. As saturation coverage is approached, CO occupies weakly bound sites in close proximity ( 3 Å) to O adatoms, with high characteristic frequencies of 2100 cm−1.  相似文献   

4.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

5.
Monte-Carlo (MC) simulation is used to study the role of adsorption of hydrogen, oxygen and carbon monoxide (CO) on the surface composition and surface bond geometry of Pd–Cu nanoparticles. For clean particles the surface is found to be enriched in Cu. But in the presence of adsorbed hydrogen and CO there is a segregation reversal from Cu segregation at low coverage to Pd segregation at high coverage. In the presence of adsorbed oxygen, on the contrary, the extent of Cu segregation increases with coverage. For a 586-atom nanoparticle with 50% Pd in the bulk the corner sites are found to be occupied by Cu atoms up to one monolayer adsorption. But, while the occupancy of 7, 8 and 9-coordinated sites by Cu atoms decreases with increase of H and CO coverage, for oxygen adsorption this occupancy increases with coverage. The relevance of such results in catalysis studies is discussed.  相似文献   

6.
High resolution electron-energy-loss spectroscopy has been used to study the surface vibrations of CO on a W(100) surface at 300 K. For small exposures (β-CO) two losses at ~68 meV and ~78 meV are observed. This vibrational spectrum of β-CO is a clear indication of dissociative adsorption with the carbon and oxygen atoms in fourfold coordination sites each. With further exposure to CO two additional losses at 45 meV and 258 meV are observed, which represent the vibration of undissociated α-CO in upright position on top of a W atom. Furtheron results of coadsorption of H2/CO and O2/CO on W(100) are reported.  相似文献   

7.
The notion of “active sites” is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.  相似文献   

8.
The chemisorption of hydrogen, oxygen, carbon, carbon monoxide and ethylene was studied by low-energy electron diffraction on ordered stepped surfaces of platinum which were cut at angles less than 10° from the (111) face. The chemisorption characteristics of stepped platinum surfaces are markedly different from those of low index platinum surfaces and they are also different from each other. Hydrogen and oxygen which do not chemisorb easily on the (111) and (100) crystal faces chemisorb readily and at relatively low temperatures and pressures on the stepped platinum surfaces used in this study. In contrast to the ordered adsorption of carbon monoxide and ethylene on low index faces, the adsorption was disordered on the stepped surfaces and there is evidence for dissociation of the molecule. Carbon formed several ordered surface structures and caused faceting on the stepped surface, which are not observed on low index platinum surfaces. There appears to be a much stronger interaction of chemisorbed gases with stepped surfaces than with low index planes that must be caused by the differing atomic structures at the steps. Evidence for the differing reactivities of the two stepped surfaces are also discussed.  相似文献   

9.
By studying the vibrational modes of H on Ni(110) as a function of coverage and temperature, a local picture of H site occupation is obtained in the lattice gas regime and on the (1 × 2) reconstructed surface at low temperature and for the irreversibly disordered surface formed by thermal conversion. Threefold sites are deduced from our data in both the lattice gas and the (1 × 2) reconstructed low temperature phases, with an additional loss in the latter phase ascribed to a second layer site. After thermal conversion, the threefold sites are depleted with a ? 0.5 monolayer (ML) transfer of H to second layer sites which appear to stabilize the surface and with ~ 0.5 ML H desorbing. Readsorption on the disordered surface indicates that a small amount of empty threefold Ni sites are still present after conversion. Various other models and site assignments are also discussed for comparison to the results of this study.  相似文献   

10.
The p(2×2) oxygen and c(2×2) hydrogen structures on Pd(100) have been investigated by angle-resolved high-resolution electron energy loss spectroscopy. Dipole excited vibrational modes are observed at 44 and 64 meV for the oxygen and hydrogen structures respectively and are interpreted to correspond to atomic adsorption in the hollow site.  相似文献   

11.
The adsorption of single hydrogen atoms, investigated by means of cluster calculations, has been compared with the adsorption of hydrogen monolayers on periodic crystals (paper I). From the similarity of the adsorption energy curves we conclude that the (direct and indirect) interactions between adsorbed hydrogen atoms are relatively small up to monolayer coverage. For adsorption on different sites of ideal low index surfaces the stability decreases in the order Atop > Bridge > Centred. For Atop adsorption it increases with a decreasing number of nearest neighbours to the nickel atom in the NiH “surface molecule”, thus leading to especially strong adsorption sites at the edges of a stepped surface and to low stability in the notches. In general, we find that the NinH “surface molecule” with n = 1, 2, 3 or 4 determines the equilibrium positions for H adsorption; the inclusion of one shell of neighbours to the nickel atoms is sufficient to explain the differences in adsorption energy. The Extended Hückel method is not well suited to study dissociative chemisorption of H2, although some qualitative trends are correct.  相似文献   

12.
M. Sotto 《Surface science》1992,260(1-3):235-244
A LEED and AES study on oxygen adsorption on Cu(100) and (h11) faces with 5 h 15 has been performed under various adsorption conditions (220 K T 670 K and 1 × 10−8 P 6 × 10−5 Torr of oxygen). The dependence of adsorption temp on the oxygen surface superstructures is pointed out. At least, three oxygen surface states exist on a Cu(100) face. For low temperature exposures to oxygen, under conditions of slow surface diffusion, on the (100) face, two oxygen surface phases exist: a “four spots” and a c(2 × 2) superstructure, both observed even at saturation coverage; on all the stepped faces, a c(2 × 2) appears and no faceting is observed. For high temperature exposures, on the (100) face, two oxygen superstructures are observed, a “four spots” followed by a (2√2 × √2)R45° at higher coverages; on all the stepped faces, surface diffusion is activated and oxygen induced faceting occurs. The appearance of faceting is associated with the onset of the formation of the (2√2 × √2)R45° structure on the (100) face. The oxygen induced faceting and the oxygen surface meshes are reversible with coverages. At saturation coverage, a non-reversible surface transition between the c(2 × 2) and (2√2 × √2)R45° superstructures is observed at 420 ± 20 K. The importance of impurity traces on the surface meshes is emphasized. Oxygen coverage at saturation is independent of the studied faces and adsorption temperature. Faceting occurs at a critical coverage value, whatever the stepped faces and adsorption temperature are. Models of the oxygen structure on the (h10) stepped faces are discussed.  相似文献   

13.
Electron energy loss measurements of the vibrational modes of oxygen on W(110) as a function of coverage up to 0.5 monolayer are presented and analyzed. A single loss at 67 meV is observed initially; with increasing exposure this loss shifts to 72 meV and another loss appears at 47 meV. These data indicate coexistence of two species on the surface with a coverage-dependent conversion. Angular profiles of the specular elastic beam show a dramatic increase in width with initial oxygen coverage; this is possibly due to an oxygen-induced static disordering of the W surface layer.  相似文献   

14.
赵新新  陶向明  宓一鸣  季鑫  汪丽莉  吴建宝  谭明秋 《物理学报》2012,61(13):136802-136802
采用密度泛函理论研究了Ru(0001) /BaO表面的原子层结构和氮分子的吸附性质. 研究结果表明, 在低覆盖度下氧化钡倾向于以相同的构型形成Ru(0001) 表面原子层. 在此构型中, 氧原子位于表面p(1× 1) 结构的hcp谷位, 而钡原子则位于同一p(1× 1) 结构的顶位附近. 钌氧键键长等于0.209 nm, 比EXAFS的实验值大0.018 nm. 在Ru(0001) /BaO表面氮分子倾向吸附于钡原子附近. 相应位置的氮分子吸附能位于0.70到0.87 eV之间, 大于氧原子附近的氮分子吸附能. 钡原子附近的钌原子对氮分子具有更强的活化性能. 相应位置的氮分子拉伸振动频率等于1946 cm- 1, 比氧原子附近的最大分子振动频率小约130 cm-1. Ru(0001) /BaO表面氮分子键强度介于清洁Ru(0001) 和Ru(0001) /Ba表面之间. Ru(0001)/BaO表面不同位置的氮分子吸附性质差异是由钡和氧原子化学性质不同造成的. 表面钡原子的作用能够减少吸附氮分子的σ*轨道电子密度, 增加π*轨道电子密度, 从而增强氮分子和钌原子间的轨道杂化作用, 弱化氮分子键.  相似文献   

15.
Magnetic and volumetric measurements associated with neutron inelastic spectroscopy demonstrate that water is dissociatively adsorbed on nickel. In the case of Raney nickel, for low coverages, the oxygen is fixed on surface aluminium atoms and hydrogen occupies two nickel sites. At high coverage, the water molecule is fixed via oxygen bonding to the hydrogen covered nickel. On nickel prepared from its hydroxide, adsorption is reversible, the water molecule occupying six metal sites.  相似文献   

16.
李波  鲍世宁  曹培林 《物理学报》2005,54(12):5784-5790
采用平面波赝势方法,利用基于从头计算的软件包,对乙烯和乙炔基在Ni(110)表面上吸附的问题进行了计算. 在低覆盖度时,孤立的乙烯分子的吸附能比密集时高,乙烯分子的C-C 轴大致沿衬底的Ni原子链方向(即沿[110]晶向),C-C轴与衬底Ni(110)表面有12°的倾斜角,乙烯分子的C—C键的键长为 0.147nm. 乙烯分子中接近顶位的C原子与衬底中距离最近的Ni原子为0.199nm. 在高覆盖度时,乙烯分子在Ni(110)表面上形成c(2×4)再构,每个表面二维元胞中有两个乙烯分子,每个乙烯分子的吸附位置与低覆盖度时相似,而C—C键长比低覆盖度时要短. 乙炔基是乙烯在Ni(110)表面上分解的产物. 关于乙炔基的计算结果表明:乙炔基的两个C原子的间距为0.131nm,比乙烯分子中C原子的间距更短. 与乙烯分子相比,乙炔基的吸附位置更靠近顶位. H原子与吸附在顶位上的C原子相连接,C—H键也大致沿衬底的Ni原子链方向,与Ni表面呈45°的倾斜角. 关键词: 乙烯和乙炔基 平面波赝势方法 吸附几何结构  相似文献   

17.
The co-adsorption of oxygen and hydrogen on Rh(111) at temperatures below 140 K has been studied by thermal desorption mass spectrometry, Auger electron spectroscopy, and lowenergy electron diffraction. The co-adsorption phenomena observed were dependent upon the sequence of adsorption in preparing the co-adsorbed overlayer. It has been found that oxygen extensively blocks sites for subsequent hydrogen adsorption and that the interaction splits the hydrogen thermal desorption into two states. The capacity of the oxygenated Rh(111) surface for hydrogen adsorption is very sensitive to the structure of the oxygen overlayer, with a disordered oxygen layer exhibiting the lowest capacity for hydrogen chemisorption. Studies with hydrogen pre-adsorption indicate that a hydrogen layer suppresses completely the formation of ordered oxygen superstructures as well as O2 desorption above 800 K. This occurs with only a 20% reduction in total oxygen coverage as measured by Auger spectroscopy.  相似文献   

18.
We have investigated ethene and oxygen co-adsorption on Cu(410) by high resolution electron energy loss spectroscopy. We find that these two species compete for the adsorption sites and that pre-exposure to oxygen affects ethene adsorption more or less strongly depending on oxygen coverage and the kind of occupied sites. The c(2 × 2) O overlayer is inert with respect to ethene adsorption, while when some oxygen is removed by thermally induced subsurface incorporation, ethene chemisorption is restored. The latter species also adsorbs on the disordered oxygen phase formed when O(2) is dosed at low crystal temperature. Contrary to the bare surface case, most of the ethene ends up in a π-bonded configuration. Dehydrogenation occurs, too, albeit as a minority channel. The so-produced carbon reacts already at low temperature with adsorbed oxygen to yield carbon monoxide, which desorbs around 190 K.  相似文献   

19.
The adsorption of hydrogen on clean Pd(110) and Pd(111) surfaces as well as on a Pd(111) surface with regular step arrays was studied by means of LEED, thermal desorption spectroscopy and contact potential measurements. Absorption in the bulk plays an important role but could be separated from the surface processes. With Pd(110) an ordered 1 × 2 structure and with Pd(111) a 1 × 1 structure was formed. Maximum work function increases of 0.36, 0.18 and 0.23 eV were determined with Pd(110), Pd(111) and the stepped surface, respectively, this quantity being influenced only by adsorbed hydrogen under the chosen conditions. The adsorption isotherms derived from contact potential data revealed that at low coverages θ ∞ √pH2, indicating atomic adsorption. Initial heats of H2 adsorption of 24.4 kcal/mole for Pd(110) and of 20.8 kcal/mole for Pd(111) were derived, in both cases Ead being constant up to at least half the saturation coverage. With the stepped surface the adsorption energies coincide with those for Pd(111) at medium coverages, but increase with decreasing coverage by about 3 kcal/mole. D2 is adsorbed on Pd(110) with an initial adsorption energy of 22.8 kcal/mole.  相似文献   

20.
The coverage dependent dynamics of CO on a Cu(111) surface are studied on an atomic scale using helium spin-echo spectroscopy. CO molecules occupy top sites preferentially, but also visit intermediate bridge sites in their motion along the reaction coordinate. We observe an increase in hopping rate as the CO coverage grows; however, the motion remains uncorrelated up to at least 0.10 monolayers (ML). From the temperature dependence of the diffusion rate, we find an effective barrier of 98 ± 5 meV for diffusion. Thermal motion is modelled with Langevin molecular dynamics, using a potential energy surface having adsorption sites at top and bridge positions and the experimental data are well represented by an adiabatic barrier for hopping of 123 meV. The sites are not degenerate and the rate changes observed with coverage are modelled successfully by changing the shape of the adiabatic potential energy surface in the region of the transition state without modifying the energy barrier. The results demonstrate that sufficient detail exists in the experimental data to provide information on the principal adsorption sites as well as the energy landscape in the region of the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号