首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We use an effective field theory (EFT) which contains only short-range interactions to study the dependence of a variety of three-nucleon observables on the pion mass. The pion-mass dependence of input quantities in our “pionless” EFT is obtained from a recent chiral EFT calculation. To the order we work at, these quantities are the 1 S 0 scattering length and effective range, the deuteron binding energy, the 3 S 1 effective range, and the binding energy of one three-nucleon bound state. The chiral EFT input we use has the inverse 3 S 1 and 1 S 0 scattering lengths vanishing at m π crit = 197.8577 MeV. At this “critical” pion mass, the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We compute the binding energies of these states up to next-to-next-to-leading order in the pionless EFT and study the convergence pattern of the EFT in the vicinity of the critical pion mass. Furthermore, we use the pionless EFT to predict how doublet and quartet nd scattering lengths depend on m π in the region between the physical pion mass and m π = m π crit .  相似文献   

2.
《Physics letters. [Part B]》1997,406(4):292-296
The three-nucleon system is studied at energies a few hundred keV above the N-d threshold. Measurements of the tensor analyzing powers T20 and T21 for p-d elastic scattering at Ec.m. = 432 keV are presented together with the corresponding theoretical predictions. The calculations are extended to very low energies since they are useful for extracting the p-d scattering lengths from the experimental data. The interaction considered here is the Argonne V18 potential plus the Urbana three-nucleon potential. The calculation of the asymptotic D- to S-state ratio for 3H and 3He, for which recent experimental results are available, is also presented.  相似文献   

3.
We address the typical strengths of hadronic parity-violating three-nucleon interactions in “pion-less” Effective Field Theory (EFT) in the nucleon-deuteron (iso-doublet) system. By analysing the superficial degree of divergence of loop diagrams, we conclude that no such interactions are needed at leading order, O(eQ-1)\ensuremath {O}(\epsilon Q^{-1}) . The only two distinct parity-violating three-nucleon structures with one derivative mix 2S\frac12\ensuremath ^2S_{\frac{1}{2}} and 2P\frac12\ensuremath ^2P_{\frac{1}{2}} waves with iso-spin transitions D \Delta I = 0 or 1. Due to their structure, they cannot absorb any divergence ostensibly appearing at next-to-leading order, O(eQ0)\ensuremath {O}(\epsilon Q^0) . This observation is based on the approximate realisation of Wigner’s combined SU(4) spin-isospin symmetry in the two-nucleon system, even when effective-range corrections are included. Parity-violating three-nucleon interactions thus only appear beyond next-to-leading order. This guarantees renormalisability of the theory to that order without introducing new, unknown coupling constants and allows the direct extraction of parity-violating two-nucleon interactions from three-nucleon experiments.  相似文献   

4.
P. Navrátil 《Few-Body Systems》2007,41(3-4):117-140
The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N2LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantageous for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations. Correspondence: P. Navrátil, Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA  相似文献   

5.
6.
《Physics letters. [Part B]》1988,203(4):341-344
The analyzing power Ay(θ) in neutron-deuteron elastic scattering was measured at En = 8.5 MeV. Comparison of the data with realistic three-nucleon calculations reveals a pronounced difference at the maximum of Ay(θ), which is most likely due to either an inadequate knowledge of the 3P components of the nucleon-nucleon interaction or to three-body effects in the three-nucleon system.  相似文献   

7.
We have measured angular distributions of the differential cross-section, the analyzingpower and all of the spin transfer coefficients K y y, K x x, K z x, K x z, and K z z for the pd elastic scattering at 250 MeV. These are the first measurements of a complete set of proton polarization observables for pd elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely the Tucson-Melbourne (TM) 2 -exchange model, a modification thereof (TM) closer to chiral symmetry, and the Urbana IX model.Received: 30 September 2002, Published online: 22 October 2003PACS: 21.45. + v Few-body systems - 21.30.-x Nuclear forces - 24.70. + s Polarization phenomena in reactions  相似文献   

8.
Using the p-wave part of the charge asymmetric three-nucleon potential we calculate the charge asymmetric binding energy in 3He3H nuclei. The total contribution which arise from the electromagnetic corrections to the three-nucleon potential turns out to be negligble.  相似文献   

9.
The numerical quality of the3H wave function obtained by the separable expansion method of Ernst, Shakin, and Thaler is examined. Separable approximations to the Paris potential with increasing accuracy are used in the1 S 0 and3 S 1-3 D 1 partial waves to calculate the binding energy, wave function, wave-function component percentages, and theS- andD-wave asymptotic normalization constants of3H. The results are compared with existing five-channel calculations obtained directly (without expansion) from the Paris potential to determine convergence. It is found that the results converge rapidly to the right values, indicating that the3H wave function thus obtained is of high quality and essentially indistinguishable from that obtained directly from the Paris interaction.Dedicated to Profs. Erich Schmid and Ivo laus on the occasion of their 60th birthdays  相似文献   

10.
A preliminary estimate of the three-nucleon force within the adiabatic framework has already been done. In this work we try to improve the first calculation by using relativistic kinematics for the pion and including theP 11 absorption channel, as well as theP 33 and the less importantS 13,S 11,P 13,P 31 channels, in theN interaction.Presented at the symposium Mesons and Light Nuclei, Bechyn, Czechoslovakia. May 27–June 1, 1985.  相似文献   

11.
Using as two-nucleon interaction input the 3S1-3D1 and 1S0 partial waves, the Faddeev equations are solved for the three-nucleon bound state. The 3S13D1T-matrix is calculated from the Reid potential. Avoiding the usual potential fit, the 1S0T-matrix is directly continued off-shell and is constructed consistent with the 1S0 phase shift of elastic two-nucleon scattering. The off-shell part of the 1S0T-matrix is parametrized and with this parametrization the dependence of the three-nucleon bound-state properties is studied. As a result it is found that the binding energy varies only between 6.2 MeV and 6.8 MeV, while the minimum in the charge form factor for electron scattering from 3He lies between 12.9 fm?2 and 18.7 fm?2. The larger (smaller) 3He binding energy is accompanied by a 3He charge form factor whose minimum is at larger (smaller) momentum transfers.  相似文献   

12.

The influence of the partial-wave states with nonzero orbital moment of the nucleon pair on the binding energy of the triton T(nnp) in the relativistic case is considered. The relativistic generalization of the Faddeev equation in the Bethe-Salpeter formalism is applied. Two-nucleon t matrix is obtained from the Bethe-Salpeter equation with separable kernel of nucleon-nucleon interaction of the rank one. The kernel form factors are the relativistic type of the Yamaguchi functions. The following two-nucleon partial-wave states are considered: 1S0, 3S1, 3D1, 3P0, 1P1, 3P1. The system of the integral equations are solved by using the iteration method. The binding energy of the triton and three-nucleon amplitudes are found. The contribution of the P and D states to the binding energy of triton is given.

  相似文献   

13.
《Nuclear Physics A》1997,614(4):461-471
The cross section of the 3He(γ,pp)n reaction has been measured for the first time over a wide photon energy and proton angular range (200 MeV ≤ Eγ ≤ 800 MeV; 20° ≤ ϑplab ≤ 160°) using the large acceptance detector DAPHNE at the tagged photon facility of the MAMI microtron in Mainz. The wide kinematical coverage of the measurement has allowed a detailed analysis of three-nucleon absorption mechanisms. A model developed by Laget explains the main characteristics of the data in the Δ resonance region.  相似文献   

14.
Multi-nucleon transfer reactions56Fe(12C, X) have been studied at an incident12C energy of 60 MeV. Angular distributions of10Be and9Be corresponding to 2p and 2p 1n transfer reactions in transition to low-lying states in the residual nuclei have been measured. The angular distribution data for 2p transfer have been analysed in terms of finite range DWBA calculations assuming a one-step transfer of two protons. The spectroscopic factors for three low-lying transitions observed in56Fe(12C,10Be)58Ni have been extracted. Transfer probabilities for the ground state transition in two- and three-nucleon stripping channels have been obtained and compared with the corresponding sequential transfer probabilities in order to emphasise the role of direct transfer of nucleons vis-a-vis sequential transfer.  相似文献   

15.
For a schematic three-nucleon problem, we derive approximate analytic expressions for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s, two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. We indicate how results of this kind may be used to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order.  相似文献   

16.
17.
A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading-order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value A(?? 0) ? 26.5 MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin and density dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.  相似文献   

18.
We extend our approach to incorporate the proton-proton (pp) Coulomb force into the three-nucleon (3N) momentum space Faddeev calculations of elastic proton-deuteron (pd) scattering and breakup to the case when also a three-nucleon force (3NF) is acting. In addition, we formulate that approach in the application to electron- and g \gamma -induced reactions on 3He . The main new ingredient is a 3-dimensional screened pp Coulomb t -matrix obtained by a numerical solution of a 3-dimensional Lippmann-Schwinger equation (LSE). The resulting equations have the same structure as the Faddeev equations which describe pd scattering without 3NF acting. That shows the practical feasibility of both presented formulations.  相似文献   

19.
20.
The three-nucleon (3N) Faddeev equation is solved in a Poincaré-invariant model of the three-nucleon system. Two-body interactions are generated so that when they are added to the two-nucleon invariant mass operator (rest energy) the two-nucleon S-matrix is identical to the non-relativistic S-matrix with a CD Bonn interaction. Cluster properties of the three-nucleon S-matrix determine how these two-nucleon interactions are embedded in the three-nucleon mass operator. Differences in the predictions of the relativistic and corresponding non-relativistic models for elastic and breakup processes are investigated. Of special interest are the lowering of the A y maximum in elastic nucleon-deuteron (Nd) scattering below ≈25?MeV caused by the Wigner spin rotations and the significant changes of the breakup cross sections in certain regions of the phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号