首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The complex dielectric functions and refractive index of atomic layer deposited HfO2 were determined by the line scan method of the valence electron energy loss spectrum (VEELS) in a scanning transmission electron microscope (STEM). The complex dielectric functions and dielectric constant of monoclinic HfO2 were calculated by the density functional theory (DFT) method. The resulting two dielectric functions were relatively well matched. On the other hand, the refractive index of HfO2 was measured as 2.18 by VEELS analysis and 2.1 by DFT calculation. The electronic structure of HfO2 was revealed by the comparison of the inter-band transition strength, obtained by STEM-VEELS, with the density of states (DOS) calculated by DFT calculation.  相似文献   

2.
In this paper we demonstrate the use of the multiple scattering methodology to interpret oxygen K-edge spectra from both the bulk and grain boundaries in a variety of ceramic oxides. The experimental electron energy loss spectra (EELS) used in this study, were obtained from a dedicated scanning transmission electron microscope (STEM). Using the STEM to obtain the spectra has the advantage that each spectrum can be acquired with atomic spatial resolution. While the energy resolution is limited to approximately 0.8 eV, and the angular integration in the microscope apertures precludes momentum resolved spectroscopy, this unprecedented spatial resolution allows the electronic structure at individual defect sites to be determined. Additionally, as the microscope can also provide an atomic resolution image of the defect, the relationship between the atomic structure of the defect and its local electronic structure can be determined. In practice, this is achieved by using the structure observed in the image to build the real space atomic cluster for multiple scattering simulations. Detailed interpretation of the simulations of oxygen K-edge spectra from bulk MgO, CaO, SrTiO3, TiO2, MnO2, Mn3O4, Mn2O3 and MnO are presented. In addition, the simulations from grain boundaries in TiO2 (undoped) and SrTiO3 (undoped and Mn doped) are discussed in relation to quantifying the changes in the local electronic structure that are a direct consequence of the defect structure. The simulations are used to make interpretations of the structure-property relationships at these grain boundaries.  相似文献   

3.
利用格林函数推导出金属纳米结构电子能量损失谱的计算公式,基于时域有限差分方法对几种典型的结构进行建模仿真,数值模拟运动电荷和结构的距离、液晶环境材料对电子能量损失谱的调节作用.仿真结果表明:当增加电子与纳米结构的距离时,电子能量损失谱谱峰降低;当添加液晶材料或各向同性衬底材料时,电子能量损失谱的峰值发生明显红移,但液晶的光轴倾角改变对峰值的调制作用有限.通过计算电子能量损失谱研究金属纳米结构表面等离子激元共振特性,为高度复杂的等离子体激元纳米结构的设计提供了理论基础.  相似文献   

4.
杨卫国  章晓中  袁俊 《物理学报》2006,55(7):3413-3419
提出了一种由电子能量损失谱(EELS)计算过渡金属d电子数的“浮动窗口”方法,该方法是对现有方法的优化,它消除了现有方法中存在的严重的系统误差,能达到较高的精度. 它的应用对于认识元素合金化后d电子数的变化以及电子结构与材料性能的关系具有重要意义. 关键词: 电子能量损失谱 浮动窗口方法 d电子数  相似文献   

5.
Skutterudites, with rattler atoms introduced in voids in the crystal unit cell, are promising thermoelectric materials. We modify the binary skutterudite with atomic content Co(8)P(24) in the cubic crystal unit cell by adding La as rattlers in all available voids and replacing Co by Fe to maintain charge balance, resulting in La(2)Fe(8)P(24). The intention is to leave the electronic structure unaltered while decreasing the thermal conductivity due to the presence of the rattlers. We compare the electronic structure of these two compounds by studying the L-edges of P and of the transition elements Co and Fe using electron energy loss spectroscopy (EELS). Our studies of the transition metal white lines show that the 3d electron count is similar for Co and Fe in these compounds. As elemental Fe has one electron less than Co, this supports the notion that each La atom donates three electrons. The L-edges of P in these two skutterudites are quite similar, signalling only minor differences in electronic structure. This is in reasonable agreement with density functional theory (DFT) calculations, and with our multiple scattering FEFF calculations of the near edge structure. However, our experimental plasmon energies and dielectric functions deviate considerably from predictions based on DFT calculations.  相似文献   

6.
The low loss region of an EEL spectrum (<50 eV) contains information about excitations of outer shell electrons and thus the electronic structure of a specimen which determines its optical properties. In this work, dedicated electron energy loss spectroscopy (EELS) methods for the experimental acquisition and analysis of spectra are described, which give improved information about the electronic structure near the bandgap region at a spatial resolution in the range of nanometers. For this purpose, we made use of a cold field emission scanning transmission electron microscope (STEM) equipped with a dedicated EELS system. This device provides a subnanometer electron probe and offers an energy resolution of 0.35 eV. Application of suitable deconvolution routines for removal of the zero loss peak extracts information on the bandgap region while the Kramers-Kronig transformation deduces the dielectric properties from the measured energy loss function. These methods have been applied to characterize the optical properties of wide-bandgap materials for the case of III-nitride compounds, which are currently the most promising material for applications on optoelectronic devices working in the blue and ultraviolet spectral range. The obtained results are in excellent agreement with experimental measurements by synchrotron ellipsometry and theoretical studies. The potential of the superior spatial resolution of EELS in a STEM is demonstrated by the analysis of dielectric properties of individual layers of heterostructures and individual defects within wurtzite GaN.  相似文献   

7.
Valence electron energy loss spectroscopy in a transmission electron microscope is employed to investigate the electronic structure of ZnO nanowires with diameter ranging from 20 to 100 nm. Its excellent spatial resolution enables this technique to explore the electronic states of a single nanowire. We found that all of the basic electronic structure characteristics of the ZnO nanowires, including the 3.3 eV band gap, the single electron interband transitions at approximately = 9.5, approximately = 13.5,and approximately = 21.8 eV, and the bulk plasmon oscillation at approximately 18.8 eV, resemble those of the bulk ZnO. Momentum transfer resolved energy loss spectra suggest that the 13.5 eV excitation is actually consisted of two weak excitations at approximately = 12.8 and approximately = 14.8 eV, which originate from transitions of two groups of the Zn 3d electrons to the empty density of states in the conduction band, with a dipole-forbidden nature. The energy loss spectra taken from single nanowires of different diameters show several size-dependent features, including an increase in the oscillator strength of the surface plasmon resonance at approximately = 11.5 eV, a broadening of the bulk plasmon peak, and splitting of the O 2s transition at approximately = 21.8 eV into two peaks, which coincides with a redshift of the bulk plasmon peak, when the nanowire diameter decreases. All these observations can be well explained by the increased surface/volume ratio in nanowires of small diameter.  相似文献   

8.
The structural, mechanical and spectroscopic properties of boehmite (AlOOH polymorph) were investigated by means of first-principle density functional theory (DFT) and semiempirical density functional based tight binding (DFTB) methods. Apart from a marginal underestimation of interlayer hydrogen bond distances the DFT method well reproduces the experimental equilibrium low-pressure structure. For the DFTB method similar good agreement was obtained for lattice parameters, however bond lengths and angles showed a larger deviation from experiment in comparison to DFT results. The experimental spectrum of the OH stretching region was interpreted by means of the calculated frequencies within the frame of the harmonic approximation and by calculating the power spectra of the hydroxyl groups obtained from molecular dynamics simulations. Using the latter approach, the strong coupling between the individual OH modes was demonstrated. Isostatic structural compression of the boehmite structure was performed in order to obtain the bulk modulus and the dependence of the vibrational spectrum on the pressure. The DFT method gives a value of 97 GPa in the athermal limit. Comparison with available bulk moduli for other AlOOH polymorphs reveals that boehmite shows the highest compression, for which mainly a strong shortening mechanism of interlayer hydrogen bonds is responsible. The DFT method also described correctly the dependence of the OH stretch frequencies upon compression resulting in a strong red shift. Although good performance is observed for the low-pressure region, the DFTB method is not found to be suitable for high-pressure studies in cases such as boehmite.  相似文献   

9.
The dielectric properties of V2O5 nanofibers, synthesized by the electrospinning method, are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) in a transmission electron microscope. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the Generalized Gradient Approximation (GGA) is presented, having found an excellent agreement between them. Although the experimental EELS has been acquired for the nanoparticles composing the fibers, and numerical calculations were carried out for bulk material, agreement between experimental and calculated results shows that no difference exists between the electronic structure in calculated bulk material and the nanoparticles. Furthermore, our results from EELS confirm that we accomplished the expected crystalline phase. The origins of interband transitions are identified in the electronic band structure by calculating the partial imaginary part of the dielectric function and the partial density of states.  相似文献   

10.
Agn(n=2~10)团簇的几何结构和电子特性   总被引:14,自引:6,他引:8  
应用密度泛函理论中B3LYP/LANL2DZ 方法优化计算并分析了Agn(n=2~10)团簇的基态几何结构及电子性质.同时计算和讨论了银团簇的原子化能、能级分布、能级间隙、电子亲和能和电离势,所得理论计算值与实验值符合较好.研究结果表明:银小团簇的结构不同于块体,且随团簇尺寸大小而相应变化,原子化能和电子亲和势随原子尺寸的增加而增加,团簇的费米能级、电子亲和势和电离势随团簇大小变化具有明显的奇偶振荡特性,并对此作了分析.团簇的电子性质和几何结构之间的密切关系及其随团簇尺寸大小变化的规律,可以从理论上确定团簇的最稳定结构,并可对实验观测结果做出解释.  相似文献   

11.
Transmission and reflection electron energy loss spectra, together with electronic diffraction patterns and Auger spectra have been registered on evaporated titanium thin films. The optical, crystallographic and chemical properties for the bulk and the surface of the films are compared. The 25 eV energy loss observed in the spectra of the low-energy electrons seems to give evidence for the formation of a superficial oxide layer. This assumption is confirmed by the transmission energy loss spectrum of pure rutile which is also presented.  相似文献   

12.
为了探索纯金属晶格稳定性的电子结构, 采用总能赝势平面波方法计算了VB族金属V、Nb和Ta不同晶体结构的晶格常数、总能和态密度,并将计算结果与第一原理投影缀加波方法结果、CALPHAD方法结果及实验数据等进行了详细地对比和分析.结果表明三种元素三种结构的大部分s态电子均已转化成成键能力更强的p或d态电子,增强了晶体原子之间的化学键合,并且s态电子向p态和d态电子的转化随晶体结构和元素周期发生明显变化.这种变化增强了原子序数较大的重金属原子之间的化学键合,形成了较高的晶体结合能,增强了晶格稳定性.  相似文献   

13.
A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.  相似文献   

14.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

15.
In this paper, we investigated the structural, electronic and optical properties of InAs, InN and InP binary compounds and their related ternary and quaternary alloys by using the full potential linearized augmented plane wave(FP-LAPW)method based on density functional theory(DFT). The total energies, the lattice parameters, and the bulk modulus and its first pressure derivative were calculated using different exchange correlation approximations. The local density approach(LDA) and Tran–Blaha modified Becke–Johnson(TB-m BJ) approximations were used to calculate the band structure.Nonlinear variations of the lattice parameters, the bulk modulus and the band gap with compositions x and y are found.Furthermore, the optical properties and the dielectric function, refractive index and loss energy were computed. Our results are in good agreement with the validated experimental and theoretical data found in the literature.  相似文献   

16.
A combined experimental and first principles study of Cu defects in bulk ZnO is presented. Cu particles are epitaxially deposited on the polar O-ZnO(0001) surface at room temperature. Upon heating, a broadening of the quasielastic peak in high resolution electron energy loss spectra is observed, corresponding to an electronic doping effect of Cu atoms in bulk ZnO with an ionization energy of 88 meV. Cu impurities in ZnO, although commonly acting as acceptors, are presently observed to induce shallow donor states. We assign these to interstitial Cu species on the basis of a hybrid density functional study.  相似文献   

17.
The characteristic electron energy loss spectrum of germanium was studied in a transmission type experiment as a function of the changes in structure due to electron bombardment. The structure of the material was characterized by electron micrograph and diffraction techniques. The electron energy loss spectrum of germanium was studied up to 45 eV, and loss peaks were observed at 15.7 eV and 31.6 eV as well as a 6 eV carbon loss. The positions of the most intense characteristic energy loss peak at 15.7 eV and its first multiple were constant for a large variation in the lattice parameters for the individual films.  相似文献   

18.
Application of time-resolved femtosecond spectroscopy to the investigation of the ultrafast electron kinetics in metallic materials is reviewed. The main experimental techniques are presented and the results obtained on electron scattering processes discussed in bulk metals and nanoparticles, focusing on the energy redistribution processes (electron–electron and electron–phonon coupling) and electronic transport. Application of the femtosecond techniques to the investigation of the acoustic vibrations of metal films and nanoparticles is also presented.  相似文献   

19.
In this study 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (MPAEMA) has been synthesized and characterized experimentally (FTIR, NMR). Theoretically, physical, electronic and vibrational properties of MPAEMA molecule have been investigated using density functional theory (DFT) calculations at B3LYP/6-311++G(d,p) basis set. Bond distance, FTIR spectrum, NMR spectra and vibrational frequencies have been carried out. The calculated FTIR and NMR spectra of the headline molecule from the DFT have been compared with the measured ones, and good results have been obtained. UV spectrum characteristics and the electronic properties, like frontier orbitals, and band gap energy of MPAEMA have also been recorded by time-dependent (TD-DFT) method based on optimized structure with different solvent. The experimental results have been compared with theoretical values. Both experimental and theoretical methods have shown that the compound has successfully been synthesized. Cytotoxicity of MPAEMA has been investigated by XTT cell proliferation assay. IC50 values of MPAEMA have been identified as 1.8 mM on HeLa cell line.  相似文献   

20.
The microstructure and electronic structure of silicon-rich oxide (SRO) films were investigated using transmission electron microscopy and electron energy loss spectroscopy as the main analytical techniques. The as-deposited SRO film was found to be a single phase SiO1.0, as suggested by its electronic structure characteristics determined by the valence electron energy loss spectrum. This single phase undergoes a continuous but incomplete phase decomposition to Si and SiO2 for films annealed between 300 and 1100°C. The resulting Si phase first appears as ~2?nm-diameter amorphous clusters which grow to larger sizes at higher annealing temperatures, but only crystallize at a critical temperature between 800 and 900°C. This cluster/matrix configuration of the SRO films is consistent with the appearance of the interface plasmon and its oscillator strength as a function of the nanoparticle size. Three separate stages were identified in the sequence of annealed films that were characterized by the presence of single-phase SiO, amorphous silicon nanoclusters, and silicon nanocrystals, respectively. The presence of amorphous silicon nanoclusters in the intermediate stage, the mean size of which can be controlled via annealing, may offer an alternative to silicon nanocrystal composites for optical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号