首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Outer synchronization between the drive network and the response network has attracted much more attention in various fields of science and engineering. In this paper, mixed outer synchronization between two complex dynamical networks with nonidentical nodes and output coupling is investigated via impulsive hybrid control, that is, an adaptive feedback controller with impulsive control effects. Moreover, both the cases of complex networks without and with coupling delay are considered. According to the stability analysis of the impulsive functional differential equation, several sufficient conditions for the networks to achieve mixed outer synchronization are derived. Numerical examples are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

2.
In this paper, the synchronization for time-delayed complex networks with adaptive coupling weights is studied. A pinning strategy and a local adaptive scheme to determine coupling weights and feedback gains are proposed. It is noted that our control strategies only rely on some local information other than the global information of the whole network. Finally, the developed techniques are applied to two complex networks which are respectively synchronized to an unstable equilibrium point and a chaotic attractor.  相似文献   

3.
In drive-response complex-variable systems, projective synchronization with respect to a real number, real matrix, or even real function means that drive-response systems evolve simultaneously along the same or inverse direction in a complex plane. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, this paper investigates projective synchronization in drive-response networks of coupled complex-variable chaotic systems with respect to complex numbers, called complex projective synchronization (CPS). The adaptive feedback control method is adopted first to achieve CPS in a general drive-response network. For a special class of drive-response networks, the CPS is achieved via pinning control. Furthermore, a universal pinning control scheme is proposed via the adaptive coupling strength method, several simple and useful criteria for CPS are obtained, and all results are illustrated by numerical examples.  相似文献   

4.
Cluster synchronization is an interesting issue in complex dynamical networks with community structure. In this paper, we study cluster synchronization of complex networks with non-identical systems by input-to-state stability. Some sufficient conditions that ensure cluster synchronization of complex networks are provided. We show that the cluster synchronization is difficult to achieve if there are some links among different clusters. The analysis is then extended to the case where the outer coupling strengths are adaptive. Finally, numerical simulations are given to validate our theoretical analysis.  相似文献   

5.
In this paper, the analysis problem of adaptive exponential synchronization in pth moment is considered for stochastic complex networks with time varying multi-delayed coupling. By using the Lyapunov–Krasovskii functional, stochastic analysis theory, several sufficient conditions to ensure the mode adaptive exponential synchronization in pth moment for stochastic delayed complex networks are derived. To illustrate the effectiveness of the synchronization conditions derived in this paper, a numerical example is finally provided.  相似文献   

6.
Cluster synchronization is investigated for complex networks via linear and adaptive feedback control strategies. It is shown that two different controllers can be designed to achieve the cluster synchronization. Unlike most existing papers, we need not nondelayed and delayed coupling matrices to be symmetric or irreducible. Finally, two examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

7.
Networks with multi-links are universal in the real world such as communication networks, transport networks, and social networks. It is important for us to investigate the control of complex dynamical network with multi-links. In this paper, both local and global stabilities of dynamical network with multi-links are analyzed by applying adaptive control theory and mathematical tools, and some new criteria are proposed to ensure the pinning synchronization. We find that the number of pinned nodes satisfies an inequality for synchronization. Additionally, we solve the problem of how much the coupling strength we need to achieve network synchronization with one pinned node in the network system with multi-links. Finally, numerical examples are used to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper investigates the adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, in which the weights of links between two connected nodes are time varying. By the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization are obtained, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects is designed. The numerical examples are presented to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

9.
It is difficult that all the boundaries of chaotic system were estimated precisely; this is why the coupling coefficient cannot be determined beforehand in the problem of synchronization of complex networks. Thus, an estimation of coupling coefficient should be given before designing some controllers. In addition, to realize the synchronization, the estimated coupling coefficient has to be large enough. However, it is not true that the larger the coupling coefficient the better the synchronization is. In fact, a coupling coefficient which is larger than what it needs to be means the energy waste. To overcome this difficulty, in this paper we propose an adaptive coupling method. And a new concept about asymptotic stability is presented. Numerical simulations are implemented on different complex networks. The results indicate that the synchronization can be achieved without a large estimated coefficient.  相似文献   

10.
This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet practical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method.  相似文献   

11.
In this paper, we investigate the cluster synchronization problem for networks with nonlinearly coupled nonidentical dynamical systems and asymmetrical coupling matrix by using pinning control. We derive sufficient conditions for cluster synchronization for any initial values through a feedback scheme and propose an adaptive feedback algorithm that adjusts the coupling strength. Some numerical examples are then given to illustrate the theoretical results.  相似文献   

12.
Dong  Hailing  Luo  Ming  Xiao  Mingqing 《Nonlinear dynamics》2019,95(2):957-969
Nonlinear Dynamics - In this paper, almost sure synchronization is developed for a class of nonlinear complex stochastic networks with an adaptive feedback control. This class of networks are...  相似文献   

13.
This paper mainly investigates the projective and lag synchronization between general complex networks via impulsive control. A general drive complex network and an impulsively controlled slave network are presented in the model. Specially, the coupling matrix in this model is not assumed to be symmetric, diffusive or irreducible. Some criteria and corollaries are, respectively, derived for the projective synchronization and lag synchronization between the presented impulsively controlled complex networks. Finally, the results are illustrated by complex networks composed of the chaotic Lorenz systems. All the numerical simulations verify the correctness of the theoretical results.  相似文献   

14.
In this paper, a novel adaptive nonlinear controller is designed to achieve stochastic synchronization of complex networks. We find that this novel adaptive nonlinear controller is less conservative and may be more widely used than the traditional adaptive linear controller. By using the properties of Weiner process, the stochastic synchronization of complex networks with stochastic perturbation via the proposed novel adaptive nonlinear controller can be achieved. Experimental tests demonstrate the superior performance of this novel adaptive nonlinear controller as compared to a conventional adaptive linear controller.  相似文献   

15.
In this paper, based on the theory of stochastic differential equations, we study the outer synchronization between two different complex dynamical networks with noise coupling. The theoretical result shows that two different complex networks can achieve generalized outer synchronization only with white-noise-based coupling. Numerical examples further verify the effectiveness and feasibility of the theoretical results. Numerical evidence shows that the synchronization rate is proportional to the noise intensity.  相似文献   

16.
Liu  Maoxing  Wu  Jie  Sun  Yong-zheng 《Nonlinear dynamics》2017,89(4):2967-2977
Nonlinear Dynamics - In this paper, the finite-time outer synchronization between two complex dynamical networks with noise perturbation is considered. Combing the adaptive and finite-time control...  相似文献   

17.
This paper presents a robust adaptive fuzzy controller to synchronize two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. A variable universe adaptive fuzzy approximator is used to approximate the nonlinear uncertain function of the synchronization error system. Based on the Lyapunov stability theory, the obtained adaptive laws of fuzzy algorithm not only guarantee the stability of the closed loop error system, but also attenuate the influence of matching error and external disturbance on synchronization error to an arbitrarily desired level. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

18.
This paper is concerned with the problem of asymptotic synchronization of a class of chaotic systems in the presence of network deterioration and time-varying delays. Based on adaptive adjustment technique and circuitry principle, a new version of the active coupling as well as its circuit realization is proposed. Then, an approach that is based on application of Lyapunov stability theory for the synchronization error system is introduced to prove the asymptotic synchronization result of the overall chaotic system. Moreover, a condition which denotes that at least one coupling will not be deteriorated for synchronization of the network is provided in the paper. It is shown that, without control inputs, the result can also be established for the deteriorated coupling networks and any time-varying bounded delay under the topological structure satisfying the condition. Finally, the proposed active couplings are physically implemented by circuits and tested by simulation on a Chua??s circuit network.  相似文献   

19.
In this paper, the problem of global synchronization for complex directed dynamical networks via adaptive aperiodically intermittent pinning control is studied. By constructing a piecewise Lyapunov function, some sufficient conditions to guarantee global synchronization are derived based on the analytical technique and theory of series with nonnegative terms. Different from previous works, the adaptive intermittent pinning control is aperiodic with non-fixed both control period and control width, and moreover, the adaptive approach is decentralized relying only on the state information of the controlled node. Hence, the adaptive intermittent pinning control strategy proposed in this paper is more practically applicable than those in previous works. Additionally, it is noted that the derived synchronization criteria are dependent on the control rates, but not the control widths or the control periods, which makes the theoretical results are less conservative than the corresponding results given in the existing works. A numerical example is finally provided to illustrate the validity of our theoretical results.  相似文献   

20.
This paper investigates the issue of almost sure cluster synchronization in nonlinearly coupled complex networks with nonidentical nodes and time-varying delay. These networks are modulated by a continuous-time Markov chain and disturbed by a Brownian movement. The decentralized adaptive update law and pinning control protocol are employed in designing controllers for guaranteeing almost sure cluster synchronization. By constructing a novel stochastic Lyapunov–Krasovskii function and using the stochastic Lasalle-type invariance theorem, some sufficient conditions for almost sure cluster synchronization of the networks are derived. Finally, a numerical example is given to testify the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号