首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The induced unsteady flow due to a stretching surface in a rotating fluid, where the unsteadiness is caused by the suddenly stretched surface is studied in this paper. After a similarity transformation, the unsteady Navier–Stokes equations have been solved numerically using the Keller-box method. Also, the perturbation solution for small times as well as the asymptotic solution for large times, when the flow becomes steady, has been obtained. It is found that there is a smooth transition from the small time solution to the large time or steady state solution.  相似文献   

2.
An analysis of a three-dimensional viscoelastic fluid flow over an exponentially stretching surface is carried out in the presence of heat transfer. Constitutive equations of a second-grade fluid are employed. The governing boundary layer equations are reduced by appropriate transformations to ordinary differential equations. Series solutions of these equations are found, and their convergence is discussed. The influence of the prominent parameters involved in the heat transfer process is analyzed. It is found that the effects of the Prandtl number, viscoelastic parameter, velocity ratio parameter, and temperature exponent on the Nusselt number are qualitatively similar.  相似文献   

3.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity cx, where x is the distance from the stagnation-point and c is a positive constant. It is shown that for a viscoelastic fluid of short memory (obeying Walters’ B model), a boundary layer is formed when the stretching velocity of the surface is less than ax, where ax+2by is the inviscid free-stream velocity and y is the distance normal to the plate, a and b being constants and the velocity at a point increases with increase in the elasticity of the fluid. On the other hand an inverted boundary layer is formed when the surface stretching velocity exceeds ax and the velocity decreases with increase in the elasticity of the fluid. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when a=c. Temperature distribution in the boundary layer is found in three cases, namely: (i) the sheet with constant surface temperature (CST); (ii) the sheet with variable surface temperature (VST) and (iii) the sheet with prescribed quadratic power law surface heat flux (PHF) for various values of non-dimensional parameters. It is found that in all the three cases when a/c>1, temperature at a point decreases with increase in the elasticity of the fluid and when a/c<1, temperature at a point increases with increase in the elasticity of the fluid. Further temperature at a point decreases with increase in the radiation parameter and wall temperature parameter.  相似文献   

4.
In this study, we investigate the heat transfer problem in a viscous fluid over an oscillatory infinite sheet with slip condition. The sheet is moved back and forth in its own plane. The derived problem involves a dimensionless parameter indicating the relative magnitude of frequency to sheet stretching rate. A system of non‐linear partial differential equations is solved numerically using the finite‐difference scheme, in which a coordinate transformation is employed to transform the semi‐infinite physical space to a bounded computational domain. The physical features of interesting parameters on the velocity and temperature distributions are shown graphically and discussed. The values of the skin‐friction coefficient and the local Nusselt number are given in tabular form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a viscoelastic fluid of short memory (obeying Walters’ B′ model), a boundary layer is formed when the stretching velocity of the surface is less than the inviscid free-stream velocity and velocity at a point increases with increase in the elasticity of the fluid. On the other hand, an inverted boundary layer is formed when the surface stretching velocity exceeds the velocity of the free stream and the velocity decreases with increase in the elasticity of the fluid. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when the surface stretching velocity is equal to the velocity of the free stream. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. It is found that temperature at a point decreases with increase in the elasticity of the fluid.  相似文献   

6.
The boundary layer flow over a stretching surface in a rotating viscoelastic fluid is considered. By applying a similarity transformation, the governing partial differ- ential equations are converted into a system of nonlinear ordinary differential equations before being solved numerically by the Keller-box method. The effects of the viscoelastic and rotation parameters on the skin friction coefficients and the velocity profiles are thor- oughly examined. The analysis reveals that the skin friction coefficients and the velocity in the x-direction increase as the viscoelastic parameter and the rotation parameter in- crease. Moreover, the velocity in the y-direction decreases as the viscoelastic parameter and the rotation parameter increase.  相似文献   

7.
Steady two-dimensional oblique stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that the flow has a boundary layer structure for values of a/c (> 1), where ax+2by and cx are the x-component of the free stream velocity and the stretching velocity of the plate respectively, x being the distance from the stagnation-point. On the other hand when a/c < 1, the flow has an inverted boundary layer structure. It is also observed that the velocity at a point increases with increase in the free stream shear. For a fixed value of a/c, the streamlines becomes more and more oblique towards the left of the stagnation-point with increase in b/c where b > 0. On the other hand the streamlines become increasingly oblique to the right of the stagnation-point with increase in |b/c| when b < 0. For a fixed value of the Prandtl number Pr, temperature at a point decreases with increase in a/c. Further for a given value of a/c, the surface heat flux increases with increase in Pr.  相似文献   

8.
A mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated. The flow is induced by an inclined stretching surface. The boundary layer equations of the Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations reduce partial differential equations to ordinary differential equations. A computational analysis is performed for convergent series solutions. The values of the local Nusselt number are numerically analyzed. The effects of various parameters on velocity and temperature are discussed.  相似文献   

9.
The axisymmetric flow of an inviscid incompressible fluid rotating about a cavity with constant pressure is considered. Due to the centrifugal force, on the cavity surface waves may exist, in particular, waves with a break in the wave base where the cavity meridional sections form the angle 2/3, i.e. Stokes waves. A method of finding these waves from the boundary-value problem for the fluid velocity potential is described. For an infinite cavity, the dependence of the wave parameters on the cavitation number, calculated using the pressure in the cavity, is given.St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 105–110, November–December, 1996.  相似文献   

10.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F(0)| with n is non-monotonic.  相似文献   

11.
We study the flow of yield stress fluids over a rotating surface when both the viscoelastic solid behavior below a critical deformation (γ c) and liquid properties beyond γ c can play a significant role. We review the detailed characteristics of the flow in the solid regime in the specific case of a pure elongational strain (large height to radius ratio). We, in particular, show that there exists a critical rotation velocity (ω c) associated with the transition from the solid to the liquid regime. We then consider the specific case of lubricational regime (small height to radius ratio) in the liquid regime. In that case we describe the different possible evolutions of the equilibrium shape of the material as a function of the rotation velocity (ω), from which we extrapolate the transient shape evolutions as ω increases. We show that for a sufficiently large rotation velocity the sample separates into two parts, one remaining at rest around the rotation axis, the other going on moving radially. These predictions are then compared with systematic spin-coating tests under increasing rotation velocity ramps followed by a plateau at ω f with typical yield stress fluids. It appears that there exists a critical velocity below which the material undergoes a limited elongation and beyond which it starts to spread significantly over the solid surface. For a larger ω f value the sample forms a thick peripheral roll, leaving behind it a thin layer of fluid at rest relatively to the disc. These characteristics are in qualitative agreement with the theoretical predictions. Beyond a sufficiently large ω f value this roll eventually spreads radially in the form of thin fingers. Moreover, in agreement with the theory in the lubricational regime, the different curves of deformation vs ω fall along a master curve when the rotation velocity is scaled by ω c for different accelerations, different sample radii, or different material yield stress. The final thickness of the deposit seems to be mainly governed by the displacement of the roll, the characteristics of which take their origin in the initial stage of the spreading, including the solid–liquid transition.  相似文献   

12.
Fluid flow in a rotating cylindrical container of radius Rw and height H with a co-axially rotating disk of radius Rd at the fluid surface is numerically investigated. The container and the disk rotate with angular velocities Ωw and Ωd, respectively. We solve the axisymmetric Navier-Stokes equations using a finite-volume method. The effects of the relative directions and magnitudes of the disk and container rotations are studied. The calculations are carried out with various ratios of Ωw and Ωd for H/Rw = 2 and Rd/Rw = 0.7. Streamlines and velocity vectors in the meridional plane and azimuthal velocities are obtained. The flow fields in the meridional plane are discussed with relation to azimuthal velocities in the interior of the container. The numerical results are also compared with experimental data.  相似文献   

13.
An analysis is made of heat transfer in the boundary layer of a viscoelastic fluid flowing over a stretching surface. The velocity of the surface varies linearly with the distance x from a fixed point and the surface is held at a uniform temperature T w higher than the temperature T of the ambient fluid. An exact analytical solution for the temperature distribution is found by solving the energy equation after taking into account strain energy stored in the fluid (due to its elastic property) and viscous dissipation. It is shown that the temperature profiles are nonsimilar in marked contrast with the case when these profiles are found to be similar in the absence of viscous dissipation and strain energy. It is also found that temperature at a point increases due to the combined influence of these two effects in comparison with its corresponding value in the absence of these two effects. A novel result of this analysis is that for small values of x, heat flows from the surface to the fluid while for moderate and large values of x, heat flows from the fluid to the surface even when T w >T . Temperature distribution and the surface heat flux are determined for various values of the Prandtl number P, the elastic parameter K 1 and the viscous dissipation parameter a. Numerical solutions are also obtained through a fourth-order accurate compact finite difference scheme. Received on 14 October 1997  相似文献   

14.
In this paper, the differential equations of motion will be established for variable-mass holonomic mechanical systems constrained to the uniform rotation, including the equations in Lagrange form. Nielsen form and Appell form. The application of these new equations is illustrated with an example.  相似文献   

15.
An analysis is carried out to study the unsteady magnetohydrodynamic (MHD) two-dimensional boundary layer flow of a second grade viscoelastic fluid over an oscillatory stretching surface. The flow is induced due to an infinite elastic sheet which is stretched back and forth in its own plane. For the investigated problem, the governing equations are reduced to a non-linear partial differential equation by means of similarity transformations. This equation is solved both by a newly developed analytic technique, namely homotopy analysis method (HAM) and by a numerical method employing the finite difference scheme, in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The results obtained by means of both methods are then compared and show an excellent agreement. The effects of various parameters like visco-elastic parameter, the Hartman number and the relative frequency amplitude of the oscillatory sheet to the stretching rate on the velocity field are graphically illustrated and analysed. The values of wall shear stress for these parameters are also tabulated and discussed.  相似文献   

16.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

17.
In [1–5] boundary-layer methods were used to solve problems concerned with the equilibrium and motion of a liquid with surface tension in a strong gravitational field (for large Bond numbers Bo). In the present paper we apply these methods to problems involving the equilibrium shape of a uniformly rotating liquid, contained in a cylindrical container of arbitrary cross section or in a container which is a surface of revolution about the z axis. Both of these problems reduce to the asymptotic integration of an equation with a small parameter involving a quasilinear elliptic operator with a nonlinear boundary condition. In the second case, owing to radial symmetry, the equation for the problem goes over into an ordinary equation; however, the wetted boundary is not known beforehand. This boundary, together with the equilibrium shape, is also determined asymptotically.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–12, November–December, 1973.The authors thank L. A. Slobozhanin for his help in the preparation of this paper.  相似文献   

18.
19.
An exact solution for steady circulatory flow about an infinite porous circular cylinder rotating with a given angular velocity in an incompressible non-Newtonian second-order fluid that is also rotating so that a given circulation is maintained at infinity, is investigated. Using the Coleman-Noll model for the fluid, it is found that when circulation, velocity, vorticity and pressure are affected by non-Newtonian effects due to second-order terms in the constitutive equation of the fluid even at the first-order approximation or the series solution used, torque is independent of these effects even when the second-order approximation is considered.  相似文献   

20.
Summary The free surface instability of a liquid film of an incompressible second-order fluid attached to a rotating circular cylinder is studied with respect to rotationally symmetric infinitesimal disturbances. The surface mode is examined in detail; the shear wave mode is qualitatively discussed. The results show that for any Reynolds numberR and any surface tensionT, there is always a range of wave numberm for which the flow is unstable. The dependence of the growth rate as well as the critical wave numberm, on the normal stress coefficients of the fluid is studied quantitatively for small as well as for finiteR. It is found that while the first normal stress coefficient has no effect on the stability of the flow, the presence of the second normal stress coefficient always tend to make the flow less stable (i.e., larger growth rate). The critical wave length (which corresponds to the mode of maximum instability and thereby determines the wave length of the breaking apart of the rings formed on the cylinder) is longer for a second-order fluid than for a Newtonian one. These effects (larger growth rate and longer critical wave length) are more pronounced asR increases and/orb (the thickness parameter) increases for a fixed surface tension parameterS. Surface tension is always stabilizing. Decreasing surface tension increases the growth rate, more so for larger magnitude of the second normal stress coefficient.
Zusammenfassung Die Instabilität der freien Oberfläche eines einem rotierenden Kreiszylinder anhaftenden Flüssigkeitsfilms einer inkompressiblen Flüssigkeit zweiter Ordnung wird gegenüber rotationssymmetrischen infinitesimalen Störungen untersucht. Dabei werden Oberflächenwellen eingehend, Scherwellen dagegen nur qualitativ behandelt. Für jede ReynoldszahlR und für jede OberflächenspannungT gibt es einen Bereich von Wellenzahlenm, für welche die Strömung instabil ist. Für kleine und für endlicheR wird die Abhängigkeit der Zuwachsrate und der kritischen Wellenzahlm cr vom Normalspannungskoeffizienten der Flüssigkeit quantitativ untersucht. Während der erste Normalspannungskoeffizient keinen Einfluß auf die Stabilität der Strömung zeigt, hat der zweite Normalspannungskoeffizient die Tendenz, die Strömung weniger stabil zu machen (z. B. größere Zuwachsraten zu liefern). Die kritische Wellenlänge (die der maximalen Instabilität entspricht und infolgedessen die Trennung der sich auf dem Zylinder bildenden Ringe verursacht) ist für die Flüssigkeit zweiter Ordnung größer als für die newtonsche Flüssigkeit. Diese Erscheinungen (größere Zuwachsrate und größere kritische Wellenlänge) sind für konstanten OberflächenspannungsparameterS mit zunehmendemR und/oder zunehmendemb (Dickenparameter des Flüssigkeitsfilms) stärker ausgeprägt. Die Oberflächenspannung wirkt immer stabilisierend. Eine Abnahme in der Oberflächenspannung erhöht die Zuwachsrate, dieser Effekt ist für große Werte des zweiten Normalspannungskoeffizienten stärker ausgeprägt.


With 12 figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号