首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a displacement of several yield-stress fluids in a Hele-Shaw cell. The topic is relevant to the development of a model for the flow of multiple phases inside a narrow fracture with application to hydraulically fracturing a hydrocarbon-bearing underground formation. Existing models for fracturing flows include only pure power-law models without yield stress, and the present work is aimed at filling this gap. The fluids are assumed to be immiscible and incompressible. We consider fluid advection in a plane channel in the presence of density gradients. Gravity is taken into account, so that there can be slumping and gravitational convection. We use the lubrication approximation so that governing equations are reduced to a 2D width-averaged system formed by the quasi-linear elliptic equation for pressure and transport equations for volume concentrations of fluids. The numerical solution is obtained using a finite-difference method. The pressure equation is solved using an iterative algorithm and the Multigrid method, while the transport equations are solved using a second-order TVD flux-limiting scheme with the superbee limiter. This numerical model is validated against three different sets of experiments: (i) gravitational slumping of fluids in a closed Hele-Shaw cell, (ii) viscous fingering of fluids with a high viscosity contrast due to the Saffman–Taylor (S–T) instability in a Hele-Shaw cell at microgravity conditions, (iii) displacement of Bingham fluids in a Hele-Shaw cell with the development of fingers due to the S–T instability. Good agreement is observed between simulations and laboratory data. The model is then used to investigate the joint effect of fingering and slumping. Numerical simulations show that the slumping rate of yield-stress fluid is significantly less pronounced than that of a Newtonian fluid with the same density and viscosity. If a low-viscosity Newtonian fluid is injected after a yield-stress one, the S–T instability at the interface leads to the development of fingers. As a result, fingers penetrating into a fluid with a finite yield stress locally decrease the pressure gradient and unyielded zones develop as a consequence.  相似文献   

2.
We present results of a computational study of visco-plastically lubricated plane channel multi-layer flows, in which the yield stress fluid layers are unyielded at the interface. We demonstrate that symmetric 3-layer flows may be established for wide ranges of viscosity ratio (m), Bingham number (B) and interface position (yi), for Reynolds numbers Re  100. Here an inner Newtonian layer is sandwiched between 2 layers of Bingham fluid. Results are presented illustrating the variation of development length with the main dimensionless parameters and for different inlet sizes. We also show that these flows may be initiated by injecting either fluid into a steady flow of the other fluid. The flows are established quicker when the core fluid is injected into a channel already full of the outer fluid. In situations where the inner fluid flow rate is dominant we observed inertial symmetry breaking in the symmetric start-up flows as Re was increased. Asymmetry is also observed in studying temporal nonlinear stability of these flows, which appear stable up to moderate Re and significant amplitudes. In general the flows destabilize at lower Re and perturbation amplitudes than do the analogous core-annular pipe flows, but 1–1 comparison is hard. When the flow is stable the decay characteristics are very similar to those of the pipe flows. In the final part of the paper we explore more exotic flow effects. We show how flow control could be used to position layers asymmetrically within the flow, and how this effect might be varied transiently. We demonstrate that more complex layered flows can be stably achieved, e.g. a 7-layered flow is established. We also show how a varying inlet position can be used to “write” in the yield stress fluid: complex structures that are advected with the flow and encapsulated within the unyielded fluid.  相似文献   

3.
We derive a flat-interface model to describe the flow of two horizontal, stably stratified fluids, where the bottom layer exhibits non-Newtonian rheology. The model takes into account the yield stress and power-law nature of the bottom fluid. In the light of the large viscosity contrast assumed to exist across the fluid interface, and for large pressure drops in the streamwise direction, the possibility for the upper Newtonian layer to display fully developed turbulence must be considered, and is described in our model. We develop a linear-stability analysis to predict the conditions under which the flat-interface state becomes unstable, and pay particular attention to characterizing the influence of the non-Newtonian rheology on the instability. Increasing the yield stress (up to the point where unyielded regions form in the bottom layer) is destabilizing; increasing the flow index, while bringing a broader spectrum of modes into play, is stabilizing. In addition, a second mode of instability is found, which depends on conditions in the bottom layer. For shear-thinning fluids, this second mode becomes more unstable, and yet more bottom-layer modes can become unstable for a suitable reduction in the flow index. One further difference between the Newtonian and non-Newtonian cases is the development of unyielded regions in the bottom layer, as the linear wave on the interface grows in time. These unyielded regions form in the trough of the wave, and can be observed in the linear analysis for a suitable parameter choice.  相似文献   

4.
We study the peristaltic transport of a Bingham fluid in a channel with small aspect ratio whose walls behave as a periodic traveling wave. The governing equations in the unyielded phase are obtained writing the integral formulation for the momentum balance. As shown in Fusi et al. (2015), this approach allows to overcome the so-called “lubrication paradox” which may arise in the thin film approximation. We consider the case in which the inlet flux is prescribed and the one in which the flow is driven by a given pressure drop. In both cases the solution of the problem is determined solving a nonlinear integral equation for the yield surface. We perform some numerical simulations to illustrate the behavior of the yield surface, assuming that the traveling wave describing the peristaltic motion has a sinusoidal shape.  相似文献   

5.
In this work, the creeping flow of a viscoplastic fluid through a planar channel with an expansion followed by a contraction is analyzed numerically. The solution of the conservation equations of mass and momentum is obtained via the finite volume method. In order to model the non-Newtonian behavior of the fluid, it was used the generalized Newtonian fluid constitutive equation. The viscosity function was the one proposed by Souza Mendes and Dutra [Souza Mendes, P.R., Dutra, E.S.S., 2004. Viscosity function for yield-stress liquids. Appl. Rheol. 14, 296–302]. The yielded and unyielded regions are obtained for several combinations of rheological parameters. The influence of these parameters on pressure drop through the cavity is also obtained and analyzed.  相似文献   

6.
Inertialess flows of elasto-viscoplastic fluids inside a leaky cavity are numerically analyzed using the finite element technique, with the goal of understanding the influence of both the elastic and viscous effects on the topology of the yield surfaces of an elasto-viscoplastic material. Assuming that the collapse of the material microstructure is instantaneous, a mechanical model is composed of the governing equations of mass and momentum for incompressible fluids, and associated with a hyperbolic equation for the extra-stress tensor based on the Oldroyd-B model (Nassar et al., 2011). The main feature of the model is the consideration of the viscosity and relaxation time as functions of the strain rate to allow the shear-thinning of the viscosity and to restrict the elastic effects to the unyielded regions of the material. The numerical simulations are performed through a three-field Galerkin least-squares-type method in terms of the extra-stress tensor and the pressure and velocity fields. The results indicate that the material yield surfaces are strongly influenced by the interplay between the elastic and viscous effects, in accordance with recent experimental visualization of elasto-viscoplastic flows.  相似文献   

7.
The Bingham fluid flow between two concentric cylinders is studied using numerical simulation. The cylinders are assumed to rotate independently, and with an imposed axial sliding. The flow field is decomposed with linearity arguments of the base circular Couette shear flow and corresponding deviation field. The numerical methods are based on the expression of the deviation field in terms of complete sets of orthogonal functions and Chebyshev series. The Galerkin projection method is used with the pressure term being eliminated. The Adams Bashforth scheme is adopted for time marching. The results show that the vortices are squeezed toward the inner cylinder due to the effect of yield stress. When the outer cylinder is held stationary, the yield stress plays a role in weakening the vortex flow. However, for the co-rotation situation, the vortex flow is initially strengthened with an increase of yield stress, and then weakened as the yield stress is raised large enough. The annular unyielded regions emerge and stick to the outer cylinder. In case of Taylor Couette flow with an imposed axial sliding, a spiral vortex flow is visible with spiral unyielded region being obtained.  相似文献   

8.
This numerical study focuses on regularised Bingham-type and viscoelastoplastic fluids, performing simulations for 4:1:4 contraction?Cexpansion flow with a hybrid finite element?Cfinite volume subcell scheme. The work explores the viscoplastic regime, via the Bingham?CPapanastasiou model, and extends this into the viscoelastoplastic regime through the Papanastasiou?COldroyd model. Our findings reveal the significant impact that elevation has in yield stress parameters, and in sharpening of the stress singularity from that of the Oldroyd/Newtonian models to the ideal Bingham form. Such aspects are covered in field response via vortex behaviour, pressure-drops, stress field structures and yielded?Cunyielded zones. With rising yield stress parameters, vortex trends reflect suppression in both upstream and downstream vortices. Viscoelastoplasticity, with its additional elasticity properties, tends to disturb upstream?Cdownstream vortex symmetry balance, with knock-on effects according to solvent-fraction and level of elasticity. Yield fronts are traced with increasing yield stress influences, revealing locations where relatively unyielded material aggregates. Analysis of pressure drop data reveals significant increases in the viscoplastic Bingham?CPapanastasiou case, O (12%) above the equivalent Newtonian fluid, that are reduced to 8% total contribution increase in the viscoelastoplastic Papanastasiou?COldroyd case. This may be argued to be a consequence of strengthening in first normal stress effects.  相似文献   

9.
In this paper, we study the fully developed gravity-driven flow of granular materials between two inclined plates. We assume that the granular materials can be represented by a modified form of the second grade fluid where the viscosity depends on the shear rate and volume fraction and the normal stress coefficients depend on the volume fraction. We also propose a new isotropic (spherical) part of the stress tensor which can be related to the compactness of the (rigid) particles. This new term ensures that the rigid solid particles cannot be compacted beyond a point, namely when the volume fraction has reached the critical/maximum packing value. The numerical results indicate that the newly proposed stress tensor has obvious and physically meaningful effects on both the velocity and the volume fraction fields.  相似文献   

10.
Much of the work on flow through porous media, especially with regard to studies on the flow of oil, are based on ‘Darcy's law’ or modifications to it, such as Darcy–Forchheimer or Brinkman models. While many theoretical and numerical studies concerning flow through porous media have taken into account the inhomogeneity and anisotropy of the porous solid, they have not taken into account the fact that the viscosity of the fluid and drag coefficient could depend on the pressure in applications, such as enhanced oil recovery (EOR). Experiments clearly indicate that the viscosity varies exponentially with respect to the pressure and the viscosity can change, in some applications, by several orders of magnitude. The fact that the viscosity depends on pressure immediately implies that the ‘drag coefficient’ would also depend on the pressure. In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications, such as EOR and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton–Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe’s ends. Starting from the dimensionless Darcy–Brinkman–Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman–Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.  相似文献   

12.
The effect of inertia and rheology parameters on the flow of viscoplastic fluids inside a lid-driven cavity is investigated using a stabilized finite element approximation. The viscoplastic material behavior is described by the model introduced by de Souza Mendes and Dutra [30] – herein called SMD fluid – which is essentially a regularized viscosity function that involves only rheological properties of the material. The incompressible balance equations are coupled with the non-linear SMD model and are approximated by a multi-field Galerkin least-squares method in terms of extra-stress, pressure and velocity. The results obtained confirm the stability features of the multi-field formulation and the appropriateness of the rheological stress regularization introduced by the SMD fluid. The influence of inertia and rheological parameters on the morphology of the material yield surfaces is analyzed and discussed.  相似文献   

13.
Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-layer flows that are linearly stable for Re = ∞. The basic methodology consists of two steps. First we eliminate interfacial instabilities by using a yield stress fluid in one fluid layer and ensuring that for the base flow configurations studied we maintain an unyielded plug region at the interface. Secondly we eliminate linear shear instabilities by ensuring a strong enough Couette component in the second fluid layer, imposed via the moving interface. We show that this technique can be applied to both shear-thinning and visco-elastic fluids.  相似文献   

14.
In this paper, we discuss various techniques for solving the system of linear equations that arise from the discretization of the incompressible Stokes equations by the finite‐element method. The proposed solution methods, based on a suitable approximation of the Schur‐complement matrix, are shown to be very effective for a variety of problems. In this paper, we discuss three types of iterative methods. Two of these approaches use the pressure mass matrix as preconditioner (or an approximation) to the Schur complement, whereas the third uses an approximation based on the ideas of least‐squares commutators (LSC). We observe that the approximation based on the pressure mass matrix gives h‐independent convergence, for both constant and variable viscosity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We investigate a variety of different semidilute polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time measured in the CaBER with relaxation times based on the first normal stress difference and the zero shear polymer viscosity that we measure in our rheometer. All of these three measurable quantities depend on different fluid parameters—the viscosity of the solvent, the polymer concentration within the solution, and the molecular weight of the polymers—and on the shear rate (in the shear flow measurements). Nevertheless, we find that the first normal stress coefficient depends quadratically on the CaBER relaxation time. Several scaling laws are presented that could help to explain this empirical relation.  相似文献   

16.
This note studies the stationary Poiseuille flow in a cylindrical channel of arbitrary cross-section with temperature dependent viscosity and internal dissipation. We assume the flow-rate given and we treat the axial pressure gradient as an unknown. Theorems of existence and uniqueness are proved using a special transformation.  相似文献   

17.
In this paper we investigate the effects of temperature-dependent viscosity, thermal conductivity and internal heat generation/absorption on the MHD flow and heat transfer of a non-Newtonian UCM fluid over a stretching sheet. The governing partial differential equations are first transformed into coupled non-linear ordinary differential equation using a similarity transformation. The resulting intricate coupled non-linear boundary value problem is solved numerically by a second order finite difference scheme known as Keller-Box method for various values of the pertinent parameters. Numerical computations are performed for two different cases namely, zero and non-zero values of the fluid viscosity parameter. That is, 1/?? r ??0 and 1/?? r ??0 to get the effects of the magnetic field and the Maxwell parameter on the velocity and temperature fields, for several physical situations. Comparisons with previously published works are presented as special cases. Numerical results for the skin-friction co-efficient and the Nusselt number with changes in the Maxwell parameter and the fluid viscosity parameter are tabulated for different values of the pertinent parameters. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the UCM fluid phenomena. Maxwell fluid reduces the wall-shear stress.  相似文献   

18.
In this work, we use nonequilibrium molecular dynamics to simulate a contraction–expansion flow of various systems, namely melts with molecules of various conformations (linear, branched, and star), linear molecules in solution, and a reference Lennard–Jones fluid. The equations for Poiseuille flow are solved using a multiple time scale algorithm extended to nonequilibrium situations. Simulations are performed at constant temperature using the Nose–Hoover dynamics. The main objective of this analysis is to investigate the molecular origin of pressure drop along planar contraction–expansion geometry, varying the length of the contraction, and the effect that different molecular conformations have on the resulting pressure drop along the geometry. Pressure drop is closely related to mass distribution (in neutral and gradient directions) and branching index of molecules. Also, it is shown that remarkable increases of pressure drops are also possible in planar geometries, provided large extensional viscosities combined with moderate values of the first normal stress difference in shear are considered, in addition to considerable reductions of the flow area at the contraction region.  相似文献   

19.
The influence of temperature‐dependent viscosity and magnetic field on the peristaltic flow of an incompressible, viscous Newtonian fluid is investigated. The governing equations are derived under the assumptions of long wavelength approximation. A regular perturbation expansion method is used to obtain the analytical solutions for the velocity and temperature fields. The expressions for the pressure rise, friction force and the relation between the flow rate and pressure gradient are obtain. In addition to analytical solutions, numerical results are also computed and compared with the analytical results with good agreement. The results are plotted for different values of variable viscosity parameter β, Hartmann number M, and amplitude ratio ?. It is found that the pressure rise decreases as the viscosity parameter β increases and it increases as the Hartmann number M increases. Finally, the maximum pressure rise (σ=0) increases as M increases and β decreases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The transient, axisymmetric squeezing of viscoplastic materials under creeping flow conditions is examined. The flow of the material even outside the disks is followed. Both cases of the disks moving with constant velocity or under constant force are studied. This time-dependent simulation of squeeze flow is performed for such materials in order to determine very accurately the evolution of the force or the velocity, respectively, and the distinct differences between these two experiments, the highly deforming shape and position of all the interfaces, the effect of possible slip on the disk surface, especially when the slip coefficient is not constant, and the effect of gravity. All these are impossible under the quasi-steady state condition used up to now. The exponential constitutive model, suggested by Papanastasiou, is employed. The governing equations are solved numerically by coupling the mixed finite element method with a quasi-elliptic mesh generation scheme in order to follow the large deformations of the free surface of the fluid. As the Bingham number increases, large departures from the corresponding Newtonian solution are found. When the disks are moving with constant velocity, unyielded material arises only around the two centers of the disks verifying previous works in which quasi-steady state conditions were assumed. The size of the unyielded region increases with the Bingham number, but decreases as time passes and the two disks approach each other. Their size also decreases as the slip velocity or the slip length along the disk wall increase. The force that must be applied on the disks in order to maintain their constant velocity increases significantly with the Bingham number and time and provides a first method to calculate the yield stress. On the other hand, when a constant force is applied on the disks, they slow down until they finally stop, because all the material between them becomes unyielded. The final location of the disk and the time when it stops provide another, probably easier, method to deduce the yield stress of the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号