首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vehicle sideslip angle is an important variable that contains information concerning the directional behaviour and stability of vehicles. As a consequence, it represents a very functional feedback for all the actual vehicle dynamics control systems. Since the measurement of the sideslip angle is expensive and unsuitable for common vehicles, its estimation is nowadays an important task. To this aim, several approaches have been adopted and the limits due to the nonlinear nature of the vehicle system are emerged. In order to overcome these limits, this paper focuses on an alternative nonlinear estimation method based on the State-Dependent-Riccati-Equation (SDRE). The technique is able to fully take into account the system nonlinearities and the measurement noise. A single track vehicle model has been employed for the synthesis of the estimator. Simulations have been conducted and comparisons with the largely used Extended Kalman Filter are illustrated. Performance of the estimator have subsequently been verified by means of experimental data acquired with an instrumented vehicle. The results show the effectiveness of the SDRE based technique, able to give an estimated sideslip angle fully in accordance with the measured one.  相似文献   

2.
Joint estimation of unknown model parameters and unobserved state components for stochastic, nonlinear dynamic systems is customarily pursued via the extended Kalman filter (EKF). However, in the presence of severe nonlinearities in the equations governing system evolution, the EKF can become unstable and accuracy of the estimates gets poor. To improve the results, in this paper we account for recent developments in the field of statistical linearization and propose an unscented Kalman filtering procedure. In the case of softening single degree-of-freedom structural systems, we show that the performance of the unscented Kalman filter (UKF), in terms of state tracking and model calibration, is significantly superior to that of the EKF.  相似文献   

3.
The Kalman filter is a familiar minimum mean square estimator for linear systems. In practice, the filter is frequently employed for nonlinear problems. This paper investigates into the application of the Kalman filter’s nonlinear variants, namely the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the second order central difference filter (CDF2). A low cost strapdown inertial navigation system (SINS) integrated with the global position system (GPS) is the performance evaluation platform for the three nonlinear data synthesis techniques. Here, the discrete-time nonlinear error equations for the SINS are implemented. Test results of a field experiment are presented and performance comparison is made for the aforesaid nonlinear estimation techniques.  相似文献   

4.
It is both theoretically and practically important to investigate the problem of event-triggered adaptive tracking control for a class of uncertain nonlinear systems subject to actuator dead-zone, which aims at reducing communication rate and compensating actuator nonlinearity simultaneously. In this paper, to handle such a problem, an event-trigger based adaptive compensation scheme is proposed for the system preceded by actuator dead-zone. The challenges of this work can be roughly classified into two categories: how to compensate the nonsmooth dead-zone nonlinearity and how to eliminate the quantization signal effects caused by event-triggered strategy. To resolve the first challenge, a new decomposition of dead-zone mathematical model is employed so that dead-zone nonlinearity can be successively compensated by using robust approach. In addition, an adaptive controller and its triggering event are co-designed based on the relative threshold strategy, such that an asymptotic tracking performance can be ensured. The proposed scheme is proved to guarantee the globally bounded of all closed-loop signals and the asymptotic convergence performance of tracking error toward zero. The simulation results illustrate the effectiveness of our proposed control scheme.  相似文献   

5.
This paper addresses the problem of global robust fault accommodation tracking for a class of uncertain nonlinear systems with unknown powers and actuator faults. It is assumed that the powers of the concerned system are unknown time-varying functions, all system nonlinearities are unknown, and unknown actuator faults depend on the time-varying power of a control input. A fault accommodation state-feedback controller is explicitly constructed based on the nonlinear error transformation technique using time-varying performance functions. Global tracking with the preselected performance bounds is established in the presence of unknown time-varying powers and unexpected actuator faults. Different from the previous results dealing with the problem of unknown time-varying powers, the proposed tracking strategy does not require the knowledge of the bounds of the time-varying powers and the nonlinear bounding functions of system nonlinearities. An underactuated mechanical system is simulated to validate the effectiveness of the proposed theoretical approach.  相似文献   

6.
This paper proposes a near optimal controller design method for unified chaotic systems based on state-dependent Riccati equation (SDRE) approach. A parameterization of the optimal nonlinear control gain is given in terms of the solution matrix of an SDRE. A simple algorithm to compute the near optimal control gain is proposed. The proposed near optimal control design method is also extended to the synchronization problem for unified chaotic systems. Finally, the effectiveness of the proposed design method is verified via numerical simulations.  相似文献   

7.
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom.As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important.In this work,an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems.Due to the special second order structure of mechanical systems,an improvement of the a-posteriori error estimator is achieved.A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique.Therefore,it can be used for moment-matching based,Gramian matrices based or modal based model reduction techniques.The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system,and a sensitivity analysis of the parameters involved in the error estimation process is conducted.  相似文献   

8.
基于矢量观测确定卫星姿态的两种非线性滤波算法   总被引:2,自引:0,他引:2  
在确定卫星姿态确定的状态估计法中,经典的扩展卡尔曼滤波(EKP)和新提出的非线性预测滤波(NPF)这两种实时滤波算法各有优缺点。通过大量仿真计算,对这两种滤波算法在不同情况下进行了多角度的对比分析,旨在寻求它们各自的适用条件。结果表明:当模型误差较大甚至非线性或测量误差较大时,NPF滤波效果好于EKF:当状态变量的初始估计误差较大时,EKF滤波效果好于NPF:当需要估计真实模型误差时,只能用NPF。  相似文献   

9.
A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both digital simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.  相似文献   

10.
Identification of Hammerstein nonlinear models has received much attention due to its ability to describe a wide variety of nonlinear systems. In this paper the maximum likelihood estimator which was originally derived for linear systems is extended to work for Hammerstein nonlinear systems in colored-noise environment. The maximum likelihood estimate is known to be statistically efficient, but can lead to complex nonlinear multidimensional optimization problem; traditional methods solve this problem at the computational cost of evaluating second derivatives. To overcome these shortcomings, a particle swarm optimization (PSO) aided maximum likelihood identification algorithm (Maximum Likelihood-Particle Swarm Optimization, ML-PSO) is first proposed to integrate PSO’s simplicity in implementation and computation, and its ability to quickly converge to a reasonably good solution. Furthermore, a novel adaptive strategy using the evolution state estimation technique is proposed to improve PSO’s performance (maximum likelihood-adaptive particle swarm optimization, ML-APSO). A simulation example shows that ML-APSO method outperforms ML-PSO and traditional recursive least square method in various noise conditions, and thus proves the effectiveness of the proposed identification scheme.  相似文献   

11.
This paper examines and contrasts the feasibility of joint state and parameter estimation of noise-driven chaotic systems using the extended Kalman filter (EKF), ensemble Kalman filter (EnKF), and particle filter (PF). In particular, we consider the chaotic vibration of a noisy Duffing oscillator perturbed by combined harmonic and random inputs ensuing a transition probability density function (pdf) of motion which displays strongly non-Gaussian features. This system offers computational simplicity while exhibiting a kaleidoscope of dynamical behavior with a slight change of input and system parameters. An extensive numerical study is undertaken to contrast the performance of various nonlinear filtering algorithms with respect to sparsity of observational data and strength of model and measurement noise. In general, the performance of EnKF is better than PF for smaller ensemble size, while for larger ensembles PF outperforms EnKF. For moderate measurement noise and frequent measurement data, EKF is able to correctly track the dynamics of the system. However, EKF performance is unsatisfactory in the presence of sparse observational data or strong measurement noise.  相似文献   

12.
The influences of actuator nonlinearities on actuator dynamics and the aeroelastic characteristics of a control fin were investigated by using iterative V-g methods in subsonic flows; in addition, the doublet-hybrid method (DHM) was used to calculate unsteady aerodynamic forces. The changes of actuator dynamics induced by nonlinearities, such as backlash or freeplay, and the variations of flutter boundaries due to the changes of actuator dynamics were observed. Results show that the aeroelastic characteristics can be significantly dependent on actuator dynamics. Thus, the actuator nonlinearities may play an important role in the nonlinear aeroelastic characteristics of an aeroelastic system. The present results also indicate that it is necessary to seriously consider the influence of actuator dynamics on the flutter characteristics at the design stage of actuators to prevent aeroelastic instabilities of aircraft or missiles.  相似文献   

13.
In this paper a closed-loop non-linear optimal controller is designed via State Dependent Riccati Equation (SDRE) and employed for a spatial six-cable robot. SDRE provides a systematic and effective design of controller for non-linear systems. The power series approximation method is extended and used to solve SDRE. Trajectory tracking along with point to point movement is carried out. Moreover, two common constraints of optimal path planning, i.e., obstacles and moving boundaries are studied, and proper strategies are proposed to deal with these constraints. Obstacle avoidance technique used in this paper is based on the concept of Artificial Potential Field, while calculus of variations is applied to choose the optimal initial or end points from the moving boundaries. Capabilities of SDRE method provides an outstanding opportunity to be combined with the considered strategies. Simulations for the spatial six-cable robot are done, and Dynamic Load Carrying Capacity is computed to illustrate the efficiency of the employed procedure. Finally the results are validated by experimental tests conducted on ICaSbot which is a spatial six-cable robot manufactured in robotics research laboratory of Iran University of Science and Technology.  相似文献   

14.
This paper deals with the stability of continuous-time multidimensional nonlinear systems in the Roesser form. The concepts from 1D Lyapunov stability theory are first extended to 2D nonlinear systems and then to general continuous-time multidimensional nonlinear systems. To check the stability, a direct Lyapunov method is developed. While the direct Lyapunov method has been recently proposed for discrete-time 2D nonlinear systems, to the best of our knowledge what is proposed in this paper are the first results of this kind on stability of continuous-time multidimensional nonlinear systems. Analogous to 1D systems, a sufficient condition for the stability is the existence of a certain type of the Lyapunov function. A new technique for constructing Lyapunov functions for 2D nonlinear systems and general multidimensional systems is proposed. The proposed method is based on the sum of squares (SOS) decomposition, therefore, it formulates the Lyapunov function search algorithmically. In this way, polynomial nonlinearities can be handled exactly and a large class of other nonlinearities can be treated introducing some auxiliary variables and constrains.  相似文献   

15.
Cui  Ting  Ding  Feng 《Nonlinear dynamics》2023,111(9):8477-8496

This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.

  相似文献   

16.
This paper reports on real-data testing results for a real-time nonlinear freeway traffic state estimator with particular focus on its adaptive features. The pursued general approach to the real-time adaptive estimation of the complete traffic state in freeway stretches is based on stochastic nonlinear macroscopic traffic flow modeling and extended Kalman filtering that are outlined in the paper. One major innovative aspect of the estimator is the on-line estimation of important model parameters (free speed, critical density, and capacity) simultaneously with the estimation of traffic flow variables (flows, mean speeds, and densities), which leads to three significant advantages of the traffic state estimator: (1) avoidance of off-line model calibration; (2) automatic adaptation to changing external conditions (e.g. weather and light conditions); (3) enabling of incident alarms. The purpose of the reported real-data testing is, first, to demonstrate advantage (1) by investigating some basic properties of the estimator and, second, to explore some adaptive capabilities of the estimator that enable the other two advantages. The achieved testing results are quite satisfactory and promising for subsequent work.  相似文献   

17.
This paper investigates a low-complexity robust decentralized fault-tolerant prescribed performance control scheme for uncertain larger-scale nonlinear systems with consideration of the unknown nonlinearity, actuator failures, dead-zone input, and external disturbance. Firstly, a new simple finite-time-convergent differentiator is developed to obtain the unmeasurable state variables with arbitrary accuracy. Then, a time-varying sliding manifold involving the output tracking error and its high-order derivatives is constructed to tackle the high-order dynamics of subsystems. Sequentially, a robust decentralized fault-tolerant control scheme is proposed for each sliding manifold with prescribed convergence rate. The prominent advantage of the proposed fault-tolerant control scheme is that any specialized approximation technique, disturbance observer, and recursive procedure of backstepping technique are avoided, which dramatically alleviates the complexity of controller design. Finally, two groups of illustrative examples are employed to demonstrate the effectiveness of the low-complexity decentralized fault-tolerant control scheme under the developed finite-time-convergent differentiator.  相似文献   

18.
引入一种长输管道流体监测与泄漏定位的新方法,将管道流动的瞬变流模型转化为状态空间模型的描述,以管线沿程流量、压强水头为状态变量,管道进口流量和出口压力视做非线性动态系统的控制输入,出口流量和进口压力观测序列构成系统的测量向量。基于小信号原理首先线性化处理非线性模型,然后用扩展的卡尔曼滤波器结合传统的双曲方程特征线解法估计泄漏尺寸与位置,并实时模拟出管道流体的压力流量过程及其沿管道的分布。试验和仿真算例表明此法模拟的管道流动状态能较快收敛到稳定状态,并且泄漏尺寸估计与定位的结果与给定值比较吻合。因此引入扩展的卡尔曼滤波能够提高瞬变流模拟管道非定常流动的准确性和跟踪能力。  相似文献   

19.
以车载微惯性测量单元/GPS/地磁系统为研究对象,构造一类模糊广义径向基函数网络辅助滤波器,完成对基于EKF的非线性导航滤波解算,以提高导航系统参数估算精度和系统动态性能.相同条件下的仿真表明,对比标准EKF和模糊广义径向基函数网络辅助滤波方法,采用后者获得的导航参数误差均方差小,统计特性好,对姿态、航向角误差的最优估计分别控制在0.2°和0.4°以内.导航解算对微惯性测量单元误差在一定范围内的变动不敏感,保证了测量的精度.  相似文献   

20.
Ashour  O. N.  Nayfeh  A. H. 《Nonlinear dynamics》2002,28(3-4):309-322
A nonlinear adaptive vibration absorber to control the vibrations offlexible structures is investigated. The absorber is based on thesaturation phenomenon associated with dynamical systems possessingquadratic nonlinearities and a two-to-one internal resonance. Thetechnique is implemented by coupling a second-order controller with thestructure through a sensor and an actuator. Energy is exchanged betweenthe structure and the controller and, near resonance, the structure'sresponse saturates to a small value.Experimental results are presented for the control of a rectangularplate and a cantilever beam using piezoelectric ceramics andmagnetostrictive alloys as actuators. The control technique isimplemented using a digital signal processing board and a modelingsoftware. The control strategy is made adaptive by incorporating anefficient frequency-measurement technique. This is validated bysuccessfully testing the control strategy for a nonconventionalproblem, where nonlinear effects hinder the application of thenonadaptive controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号