首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

2.
In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.  相似文献   

3.
In this study, non-linear free vibration of micro-plates based on strain gradient elasticity theory is investigated. A general form of Mindlin’s first-strain gradient elasticity theory is employed to obtain a general Kirchhoff micro-plate formulation. The von Karman strain tensor is used to capture the geometric non-linearity. The governing equations of motion and boundary conditions are obtained in a variational framework. The Homotopy analysis method is employed to obtain an accurate analytical expression for the non-linear natural frequency of vibration. For some specific values of the gradient-based material parameters, the general plate formulation can be reduced to those based on some special forms of strain gradient elasticity theory. Accordingly, three different micro-plate formulations are introduced, which are based on three special strain gradient elasticity theories. It is found that both geometric non-linearity and size effect increase the natural frequency of vibration. In a micro-plate having a thickness comparable with the material length scale parameter, the strain gradient effect on increasing the non-linear natural frequency is higher than that of the geometric non-linearity. By increasing the plate thickness, the strain gradient effect decreases or even diminishes. In this case, geometric non-linearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for micro-plates with some specific thickness to length scale parameter ratios, both geometric non-linearity and size effect have significant role on increasing the frequency of non-linear vibration.  相似文献   

4.
The deformation behavior of materials in the micron scale has been experimentally shown to be size dependent. In the absence of stretch and dilatation gradients, the size dependence can be explained using classical couple stress theory in which the full curvature tensor is used as deformation measures in addition to the conventional strain measures. In the couple stress theory formulation, only conventional equilibrium relations of forces and moments of forces are used. The couple's association with position is arbitrary. In this paper, an additional equilibrium relation is developed to govern the behavior of the couples. The relation constrained the couple stress tensor to be symmetric, and the symmetric curvature tensor became the only properly conjugated high order strain measures in the theory to have a real contribution to the total strain energy of the system. On the basis of this modification, a linear elastic model for isotropic materials is developed. The torsion of a cylindrical bar and the pure bending of a flat plate of infinite width are analyzed to illustrate the effect of the modification.  相似文献   

5.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

6.
Mindlin's second strain gradient continuum theory for isotropic linear elastic materials is used to model two different kinds of size-dependent surface effects observed in the mechanical behaviour of nano-objects. First, the existence of an initial higher order stress represented by Mindlin's cohesion parameter, b0, makes it possible to account for the relaxation behaviour of traction-free surfaces. Second, the higher order elastic moduli, ci, coupling the strain tensor and its second gradient are shown to significantly affect the apparent elastic properties of nano-beams and nano-films under uni-axial loading. These two effects are independent from each other and allow for separated identification of the corresponding material parameters. Analytical results are provided for the size-dependent apparent shear modulus of a nano-thin strip under shear. Finite element simulations are then performed to derive the dependence of the apparent Young modulus and Poisson ratio of nano-films with respect to their thickness, and to illustrate hole free surface relaxation in a periodic nano-porous material.  相似文献   

7.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

8.
In this research, vibration and wave propagation analysis of a twisted microbeam on Pasternak foundation is investigated. The strain-displacement relations (kinematic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at microscale. Finally, using an energy method and Hamilton’s principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave propagation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is inversely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.  相似文献   

9.
A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this gradient theory, we can connect it with a static version of Eringen’s nonlocal elasticity. For the first time, it is used to study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsingular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line. The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.  相似文献   

10.
A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational principle. The main differences between the Eringen stress gradient model and the concomitant Aifantis strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient effects and compared with the analogous strain gradient beam model.  相似文献   

11.
A microscale nonlinear Bernoulli–Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton’s principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.  相似文献   

12.
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lomer–Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.  相似文献   

13.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

14.
In this study, a micro scale non-linear Timoshenko beam model based on a general form of strain gradient elasticity theory is developed. The von Karman strain tensor is used to capture the geometric non-linearity. Governing equations of motion and boundary conditions are derived using Hamilton's principle. For some specific values of the gradient-based material parameters, the general beam formulation can be specialized to those based on simple forms of strain gradient elasticity. Accordingly, a simple form of the microbeam formulation is introduced. In order to investigate the behavior of the beam formulation, the problem of non-linear free vibration of a simply-supported microbeam is solved. It is shown that both strain gradient effect and that of geometric non-linearity increase the beam natural frequency. Numerical results reveal that for a microbeam with a thickness comparable to its material length scale parameter, the effect of strain gradient is higher than that of the geometric non-linearity. However, as the beam thickness increases, the difference between the results of the classical beam formulation and those of the gradient-based formulations become negligible. In other words, geometric non-linearity plays the essential role on increasing the natural frequency of a microbeam having a large thickness-to-length parameter ratio. In addition, it is shown that for some microbeams, both geometric non-linearity and size effect have significant contributions on increasing the natural frequency of non-linear vibrations.  相似文献   

15.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

16.
An analytical solution for the stress, strain and displacement fields in an internally pressurized thick-walled cylinder of an elastic strain-hardening plastic material in the plane strain state is presented. A strain gradient plasticity theory is used to describe the constitutive behavior of the material undergoing plastic deformations, whereas the generalized Hooke’s law is invoked to represent the material response in the elastic region. The solution gives explicit expressions for the stress, strain and displacement components. The inner radius of the cylinder enters these expressions not only in non-dimensional forms but also with its own dimensional identity, unlike classical plasticity-based solutions. As a result, the current solution can capture the size (strengthening) effect at the micron scale. The classical plasticity-based solution of the same problem is shown to be a special case of the present solution. Numerical results for the maximum effective stress in the cylinder wall are also provided to illustrate applications of the newly derived solution.  相似文献   

17.
On the basis of the modified strain gradient elasticity theory, the free vibration characteristics of curved microbeams made of functionally graded materials (FGMs) whose material properties vary in the thickness direction are investigated. A size-dependent first-order shear deformation beam model is developed containing three internal material length scale parameters to incorporate small-scale effect. Through Hamilton’s principle, the higher-order governing equations of motion and boundary conditions are derived. Natural frequencies of FGM curved microbeams corresponding to different mode numbers are evaluated for over a wide range of material property gradient index, dimensionless length scale parameter and aspect ratio. Moreover, the results obtained via the present non-classical first-order shear deformation beam model are compared with those of degenerated beam models based on the modified couple stress and the classical theories. It is found that the difference between the natural frequencies predicted by the various beam models is more significant for lower values of dimensionless length scale parameter and higher values of mode number.  相似文献   

18.
Bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory is presented within the modified strain gradient elasticity and modified couple stress theories. The governing equations and the related boundary conditions are derived from the variational principles. These equations are solved analytically for deflection, bending, and rotation responses of micro-sized beams. Propped cantilever, both ends clamped, both ends simply supported, and cantilever cases are taken into consideration as boundary conditions. The influence of size effect and additional material parameters on the static response of micro-sized beams in bending is examined. The effect of Poisson’s ratio is also investigated in detail. It is concluded from the results that the bending values obtained by these higher-order elasticity theories have a significant difference with those calculated by the classical elasticity theory.  相似文献   

19.
20.
In this work, the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction. By utilizing the variational principle of virtual work, the governing equations and the associated standard boundary conditions are systematically extracted, and the thermal effect, equivalent to the induced thermal load, is explicitly assessed by using the nonlocal heat conduction law. The ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号