首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of the anti-plane interface cracks in piezoelectric(PE)-piezomagnetic(PM)sandwich structures are studied by the standard methods of the integral transform and singular integral equation.Discussion on the numerical examples indicates that the PE-PM-PE structure under electric impact is more likely to fracture than the PM-PE-PM structure under a magnetic impact.The dynamic stress intensity factors(DSIFs)are more sensitive to the variation of the active layer thickness.The effects of the material constants on the DSIFs are dependent on the roles played by PE and PM media during the deformation process.  相似文献   

2.
动载下裂纹应力强度因子计算的改进型扩展有限元法   总被引:2,自引:0,他引:2  
文龙飞  王理想  田荣 《力学学报》2018,50(3):599-610
相较于常规扩展有限元法(extended finite element method, XFEM), 改进型扩展有限元法(improved XFEM) 解决了现有方法线性相关与总体刚度矩阵高度病态问题, 在数量级上提升了总体方程的求解效率, 克服了现有方法在动力学问题中的能量正确传递、动态应力强度因子数值震荡、精度低下问题. 本文基于改进型XFEM, 采用Newmark 隐式时间积分算法, 重点研究了动载荷作用下扩展裂纹尖端应力强度因子的求解方法, 与静力学方法相比, 增加了裂纹扩展速度项与惯性项的贡献. 通过数值算例研究了网格单元尺寸、质量矩阵、时间步长、裂尖加强区域、惯性项、扩展速度项及相互作用积分区域J-domain的网格与单元尺寸对动态应力强度因子求解精度的影响, 验证了改进型XFEM计算动态裂纹应力强度因子方法的有效性. 针对文献中具有挑战性的 "I 型半无限长裂纹先稳定后扩展"问题, 改进型XFEM给出目前为止精度最好的动态应力强度因子数值解.   相似文献   

3.
Based on flügge's thin orthotropic shell equations and a linear potential flow theory, buckling instability and flutter-type instability of orthotropic circular cylindrical shells conveying fluid are studied. By means of the expansion in beam-mode functions and Galerkin's method they can be reduced to solving a generalized complex eigenvalue problem. In calculating the generalized forces defined as Eq. (23), a direct numerical integration technique, which has proven to be more efficient than others, is used. For clamped-clamped orthotropic shells several numerical examples show that the effects of axial elastic modulus on the dynamic behaviors are quite different from those of circumferential elastic modulus.  相似文献   

4.
Dynamic stress intensity factors (DSIFs) are important fracture parameters in understanding and predicting dynamic fracture behavior of a cracked body. To evaluate DSIFs for both homogeneous and non-homogeneous materials, the interaction integral (conservation integral) originally proposed to evaluate SIFs for a static homogeneous medium is extended to incorporate dynamic effects and material non-homogeneity, and is implemented in conjunction with the finite element method (FEM). The technique is implemented and verified using benchmark problems. Then, various homogeneous and non-homogeneous cracked bodies under dynamic loading are employed to investigate dynamic fracture behavior such as the variation of DSIFs for different material property profiles, the relation between initiation time and the domain size (for integral evaluation), and the contribution of each distinct term in the interaction integral.  相似文献   

5.
A novel nodal integration technique for the meshfree radial point interpolation method (NI-RPIM) is presented for solid mechanics problems. In the NI-RPIM, radial basis functions (RBFs) augmented with polynomials are used to construct shape functions that possess the Delta function property. Galerkin weak form is adopted for creating discretized system equations, in which nodal integration is used to compute system matrices. A stable and simple nodal integration scheme is proposed to perform the nodal integration numerically. The NI-RPIM is examined using a number of example problems including stress analysis of an automobile mechanical component. The effect of shape parameters and dimension of local support domain on the results of the NI-RPIM is investigated in detail through these examples. The numerical solutions show that the present method is a robust, reliable, stable meshfree method and possesses better computational properties compared with traditional linear FEM and original RPIM using Gauss integration scheme.  相似文献   

6.
薄板弯曲分析的高阶高效无网格法   总被引:2,自引:0,他引:2  
与传统有限元法相比,无网格法具有节点形函数高度光滑、易于形成高阶近似等优势,更适合于以薄板弯曲问题为代表的高阶偏微分方程的数值求解。然而,高阶无网格法的形函数是非多项式的有理函数,导致弱形式的区域积分难以得到精确计算,通常采用的高阶高斯积分方法需使用大量积分点,计算效率低且精度不高。本文针对薄板弯曲问题的高阶(三阶)无网格法分析,首次发展了与该高阶近似相一致的曲率光顺方案,并基于背景三角形积分单元建立了相应的数值积分格式,大幅度减少了所需的积分点数目。所发展方法的关键在于计算刚度阵所需的形函数的二阶导数由形函数及其一阶导数通过散度定理确定,而非对形函数直接求导获得。数值结果表明,基于标准的高斯积分方案的高阶无网格法精度不高,不能精确再现纯弯曲和线性弯曲模式,且得到的弯矩场分布存在严重的虚假数值振荡。而本文所建议的基于曲率光顺方案的高阶无网格法能够方便高效地求解薄板弯曲问题,尤其是它能精确反映纯弯曲和线性弯曲模式。与标准的高斯积分方法和目前主流的常曲率光顺方法相比,本文方法在计算效率、精度、弯矩分布等方面均展现出显著优势,因而具有较好的应用价值。  相似文献   

7.
Different fracture methods in meshfree methods are studied and compared. Our studies focuses on the elementfree Galerkin (EFG) method though similar results were obtained with SPH and MPM. Three major fracture approaches are tested: Natural fracture, smeared crack method and discrete crack method. In the latter method, the crack is represented as continuous line and as set of discrete crack segment. Natural fracture is a key feature of meshfree methods. In some numerical examples, we will show that natural fracture criterion cannot handle even simple fracture adequately. Moreover, we will show in our numerical examples that smeared crack models can capture global behavior appropriately for simple examples but not for complex examples involving branching cracks. The most accurate methods are discrete fracture methods.  相似文献   

8.
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.  相似文献   

9.
The fracture behaviors near the mode Ⅱ interface crack tip for orthotropic bimaterial are studied. The non-oscillatory field, where the stress singularity exponent is a real number, is discussed by the complex function method and the undetermined coefficient method. From the research fracture problems, the stress functions with ten undetermined coefficients and an unknown singularity exponent are introduced when?_1 0 and ?_2 0. By the existence theorem of non-trival solutions for the system of eight homogeneous linear equations, the characteristic equation, the stress singularity exponent, and the discriminating condition of the non-oscillatory singularity are found.By the uniqueness theorem of the solutions for the system of twelve non-homogeneous linear equations with ten unknowns, the ten undermined coefficients in the stress functions are uniquely determined. The definitions of the stress intensity factors are given with the help of one-sided limit, and their theoretical formulae are deduced. The analytic solutions of the stresses near the mode Ⅱ interface crack tip are derived. The classical results for orthotropic material are obtained.  相似文献   

10.
The interaction integral is an accurate and robust scheme for evaluating mixed-mode stress intensity factors. This paper extends the concept to orthotropic functionally graded materials and addresses fracture mechanics problems with arbitrarily oriented straight and/or curved cracks. The gradation of orthotropic material properties are smooth functions of spatial coordinates, which are integrated into the element stiffness matrix using the so-called “generalized isoparametric formulation”. The types of orthotropic material gradation considered include exponential, radial, and hyperbolic-tangent functions. Stress intensity factors for mode I and mixed-mode two-dimensional problems are evaluated by means of the interaction integral and the finite element method. Extensive computational experiments have been performed to validate the proposed formulation. The accuracy of numerical results is discussed by comparison with available analytical, semi-analytical, or numerical solutions.  相似文献   

11.
A two-level fracture model of composites with cracks under compression is proposed. Fiber-reinforced laminated panels with a hole are considered. The panels are compressed along the fibers so that two cracks propagate from the hole boundary at a right angle to the loading direction. The fracture mechanism is analyzed at two levels. The first level is the compression-induced stress concentration at the tip of a finite-thickness crack filled with a fractured material. At this level, the theory of elasticity of linear orthotropic body is used. The second level is compression fracture at the crack tip. The analysis performed at this level involves the three-dimensional linearized theory of stability of solids, considering microcracks in the interface between the fractured and intact materials, and the exact solution describing the compression-induced instability of the cracked interface. The second level is where results obtained by the author are used. Thus, the approach proposed employs the theory of elasticity of linear orthotropic body and the three-dimensional linearized theory of stability of solids to analyze a specific mechanism of fracture__________Published in Prikladnaya Mekhanika, Vol. 41, No. 5, pp. 141–144, May 2005Reported at ICF-11 (Turin, Italy, March 20–25, 2005). The ICF-11 proceedings have been published on CD-ROM. The author ‘s other reports presented at ICF-6 (1984) to ICF-10 (2001) are listed in Appendix.  相似文献   

12.
Short duration stress pulses are of particular interest in determining the interfacial crack tip instability criteria for the dynamic fracture behavior of laminated carbon-fiber/epoxy composites. However, the heterogeneous architectures of laminated composites can alter the characteristics of a stress pulse as it propagates toward a crack tip. This makes it difficult to use standard dynamic testing techniques for characterizing these materials, since these techniques assume the characteristics of the stress pulse do not change as a result of propagation and can therefore be unambiguously determined from impact conditions. This paper presents a novel experimental technique that has been developed for characterizing short duration stress pulse propagation in laminated composite materials. In this technique, a dynamic moiré interferometer is used to capture fringe patterns corresponding to displacement fields associated with short duration stress pulses that were generated by impacting 0° and 90°/0°/90° carbon-fiber/epoxy composites with a magnetic flyer plate. Appropriate dynamic testing conditions for capturing high fidelity fringe patterns were determined using the recently developed dynamic moiré fringe contrast factor. The effects of the composite architecture on the propagation of short duration stress pulses observed with the dynamic moiré interferometer were confirmed by transient dynamic finite element analysis. From comparisons of experimental and numerical data, it was determined that the impact conditions for the magnetic flyer plate and laminated composite will not necessarily be planar, which has a significant effect on the intensity and duration of the propagating stress pulse.  相似文献   

13.
In the present paper, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder are investigated. It is assumed that a transient magnetic field which is defined by an arbitrary function of time acts on the surface of the solid cylinder in the direction parallel to its surface. Fundamental equations of plane axisymmetrical electromagnetic, temperature, and elastic fields are formulated. Then, solutions of magnetic field, eddy current, temperature change and both dynamic solutions and quasi-static ones of stresses and deformations are analytically derived in the forms including the arbitrary function. The solutions of stresses are determined to be sums of thermal stress caused by eddy current loss and magnetic stress caused by Lorentz force. For this case that the arbitrary function is given by the smoothed ramp function with sine function, the dynamic and quasi-static behaviors of the stresses are examined by numerical calculations.  相似文献   

14.
提出一种改进的灵敏度方法用于工程结构损伤检测中。通过在迭代算法中引入一个“加速”公式来迅速获得足够精确的识别结果,避免了多次迭代,可以大大减少计算花费。用文献[8]和文献[10]中的两个数值算例对所提方法进行了验证,并把结果和原文中的计算结果进行比较。结果表明:采用改进的方法一般只需经过一次计算即可获得精度更高的识别结果,避免了多次迭代,显著减少了计算花费,显示了改进方法突出的优越性。  相似文献   

15.
等几何修正准凸无网格法   总被引:4,自引:2,他引:2  
采用等几何B样条基函数的多项式再生条件对无网格形函数的多项式再生条件进行了修正,使得无网格形函数的负值部分明显减少,在域内趋于非负函数,即等几何修正准凸无网格形函数。该准凸无网格形函数仍然具有与传统再生核无网格形函数相似的构造形式,数值实现比较便捷,同时该准凸无网格形函数的多项式再生条件具有准确的修正系数,无需引入额外的人工节点松弛参数。更重要的是,等几何修正准凸无网格形函数可在确保形函数高阶光滑的前提下减小相对支持域,提高计算效率。最后,基于等几何修正准凸无网格形函数对杆梁和膜板结构进行了伽辽金无网格振动分析。结果表明,与标准再生核无网格法相比,等几何修正准凸无网格法具有更优的计算精度。  相似文献   

16.
Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of 2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions. Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media. The project supported by the Basic Research Foundation of Tsinghua University, the National Foundation for Excellent Doctoral Thesis (200025) and the National Natural Science Foundation of China (19902007). The English text was polished by Keren Wang.  相似文献   

17.
陈健  王东东  刘宇翔  陈俊 《力学学报》2022,54(3):732-745
在无网格动力分析中,除了无网格形函数本身构造复杂引入的计算成本,还需要逐步递推求解每个时间步的动力响应,因而计算效率较为低下.本文通过研究无网格离散数据与机器学习训练样本、无网格动力分析递推计算过程与循环卷积神经网络序列信息传递模式之间的本征联系,构建了与无网格法相匹配的循环卷积神经网络设计方法,进而提出了一种无网格动...  相似文献   

18.
薄板问题的控制方程为四阶微分方程,因而当采用伽辽金法进行分析时,形函数需要满足C$^{1}$连续性要求,且至少使用二次基函数才能保证方法的收敛性.无网格形函数虽然易于满足C$^{1}$连续性要求,但由于不是多项式,其二阶导数的计算较为复杂耗时,同时也对刚度矩阵的数值积分提出了更高的要求.本文提出了一种薄板分析的线性基梯度光滑伽辽金无网格法,该方法的基础是线性基无网格形函数的光滑梯度.在梯度光滑构造的理论框架内,无网格形函数的二阶光滑梯度可以表示为形函数一阶梯度的线性组合,因而可以提高形函数二阶梯度的计算效率.分析表明,线性基无网格形函数的光滑梯度不仅满足其固有的线性梯度一致性条件,还满足本属于二次基函数对应的额外高阶一致性条件,因此能够恰当地运用到薄板结构的伽辽金分析.此外,插值误差分析也很好地验证了线性基无网格光滑梯度的收敛特性.算例结果进一步表明,线性基梯度光滑伽辽金无网格法的收敛率与传统二次基伽辽金无网格法相当,但精度更高,同时刚度矩阵所需的高斯积分点数明显减少.   相似文献   

19.
M. Eynbeygui  M. M. Aghdam 《Meccanica》2017,52(15):3693-3711
This paper deals with a two-dimensional generalized plane strain micro-mechanical model to simulate semi-coupled thermo-electro-elastic behavior of transversely polarized piezoelectric fibrous composites. The solution domain includes a representative volume element (RVE) consists of a long piezoelectric fiber surrounded by corresponding matrix in a square array arrangement. Fibers have orthotropic and/or transversely isotropic properties while are perfectly bonded to the isotropic matrix. In addition, the constituents are assumed to have linear thermo-electro-elastic behavior. The virtual form of equilibrium equations has been extended to cover the semi-coupled thermo-electro-elastic loading by using appropriate constitutive relations. The element-free Galerkin method is employed to discretize the governing equations in terms of three main primary variables including, displacements, electric potential and temperature. The performance of the present micro-mechanical study reveals close agreement compared with other techniques available in the literature. Based on the present study, ample results are addressed to provide an insight into the effects of the local fields, i.e. displacement, electric potential, electric field, and stress distributions within the RVE for the specific fiber volume fraction.  相似文献   

20.
正交异性动态光弹性方法的几个基本问题的研究   总被引:2,自引:0,他引:2  
刘海笑  励争 《实验力学》1998,13(3):334-342
文章对适用于动态研究的正交异性光弹性复合材料进行了分析,详细说明了光弹性复合材料中残余双折射的确定方法;基于静态下Hyer和Liu应力-光性定律,提出了正交异性动态应力-光性定律,并对正交异性材料的动态力学参数及动态光弹性常数给出了实用的标定方法;最后,利用三个单轴压缩试件(0°,90°及45°),采用动态应变测量方法,证实了单轴应力状态下正交异性动态应力-光性定律的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号