首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative model of primary ionization in ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) is presented. It includes not only photochemical processes such as exciton pooling, but also the effects of the desorption event. The interplay of these two is found to be a crucial aspect of the MALDI process. The desorbing plume is modeled as an adiabatic expansion with entrained clusters. The parameters in the model are defined as much as possible via experiment or by analogy with known effects. The model was applied to the matrix 2,5-dihydroxybenzoic acid and found to reproduce the fluence dependence of the fluorescence yield and key features of the picosecond two-pulse ion generation efficiency curves. In addition, the model correctly predicts a fluence rather than irradiance threshold, the magnitude of the threshold, the magnitude of the ion yield, laser wavelength effects, plume temperatures, plume expansion velocities and the spot size effect.  相似文献   

2.
The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters ranging from 10 to 200 μm in size have been used. 2,5-Dihydroxybenzoic acid (DHB) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) have been tested as matrices. The threshold (for ion detection) is higher and the dependence of the ion signal upon higher-than-threshold fluences is stronger for directly desorbed ions than for photoionized neutral molecules. Directly desorbed analyte ions exhibit the same dependence on fluence as the matrix ions with only minor differences between the two matrices tested, so both have approximately the same detection threshold. For both ions and photoionized neutral molecules, the fluence threshold increases with decreasing spot size while the slope of the intensity/fluence curves decreases. A quasi-thermal, sublimation/desportion model was found to describe the experimental results with excellent precision. For a complete explanation, non-equilibrium effects had to be taken into account.  相似文献   

3.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

4.
We report the detection of nanoparticles formed by irradiating matrix-assisted laser desorption/ionization (MALDI) matrix samples. This is direct evidence for the ejection of large size aggregates in the MALDI process. Nanometer-size particles were generated via a tunable solid-state UV laser, irradiating a sample placed in a nitrogen atmosphere. Size distribution measurements were performed using a differential mobility analyzer and a condensation particle counter. Particles in the 10-1000 nm size range were detected. The dependence of the particle size distribution on the laser fluence, wavelength and matrix was investigated. The observed effects are discussed and related to the MALDI ablation dynamics and gas-phase processes.  相似文献   

5.
A transmission geometry optical configuration allows for smaller laser spot size to facilitate high‐resolution matrix‐assisted laser/desorption ionization (MALDI) mass spectrometry. This increase in spatial resolution (ie, smaller laser spot size) is often associated with a decrease in analyte signal. MALDI‐2 is a post‐ionization technique, which irradiates ions and neutrals generated in the initial MALDI plume with a second orthogonal laser pulse, and has been shown to improve sensitivity. Herein, we have modified a commercial Orbitrap mass spectrometer to incorporate a transmission geometry MALDI source with MALDI‐2 capabilities to improve sensitivity at higher spatial resolutions.  相似文献   

6.
A sample stage is described that allows the on-line analysis of laser intensity profiles and spot sizes directly in the ion source of a matrix-assisted laser desorption ionization (MALDI) mass spectrometer. The detector uses either a scanning knife-edge or a narrow slit in combination with diffusing disks for scattering of photons and a pyroelectric sensor for recording the light pulses. The setup was integrated into the sample holder of a oMALDI2(TM) ion source (AB Sciex) and allows parallel analysis of UV- and IR-laser beams at typical UV-/IR-MALDI laser fluences. The concept could be especially useful for a precise control of the laser spot size in MALDI imaging applications.  相似文献   

7.
Effects of sample exposure to UV laser irradiation on the matrix-assisted laser desorption—ionization (MALDI) mass spectra of different proteins are reported. The exposure is varied by irradiating the same sample spot with a differing number of UV laser pulses. The ion yield, mass resolution and internal energy content of ejected molecular ions are monitored as a function of the sample exposure. Other parameters that influence the MALDI spectra (and related to sample exposure) such as laser fluence, sample thickness, matrix-to-protein molar ratio, total deposited amount, and molecular mass of the protein, are also examined.  相似文献   

8.
Benzyl-substituted benzylpyridinium (BP) chloride salts were used as a source of thermometer ions to probe the internal energy (IE) transfer in desorption/ionization on porous silicon (DIOS). To modify their wetting properties and the interaction energies with the thermometer ions, the DIOS surfaces were silylated to produce trimethylsilyl- (TMS), amine- (NH2), perfluoroalkyl- (PFA), and perfluorophenyl-derivatized (PFP) surfaces. Two laser sources--a nitrogen laser with pulse length of 4 ns and a mode locked 3 x omega Nd:YAG laser with a pulse length of 22 ps--were utilized to induce desorption/ionization and fragmentation at various laser fluence levels. The corresponding survival yields were determined as indicators of the IE transfer and the IE distributions were extracted. In most cases, with increasing the laser fluence in a broad range (approximately 20 mJ/cm2), no change in IE transfer was observed. For ns excitation, this was in remarkable contrast with MALDI, where increasing the laser fluence resulted in sharply (within approximately 5 mJ/cm2) declining survival yields. Derivatization of the porous silicon surface did not affect the survival yields significantly but had a discernible effect on the threshold fluence for ion production. The IE distributions determined for DIOS and MALDI from alpha-cyano-4-hydroxycinnamic acid reveal that the mean IE value is always lower for the latter. Using the ps laser, the IE distribution is always narrower for DIOS, whereas for ns laser excitation the width depends on surface modification. Most of the differences between MALDI and DIOS described here are compatible with the different dimensionality of the plume expansion and the differences in the activation energy of desorption due to surface modifications.  相似文献   

9.
Matrix assisted laser desorption/ionization (MALDI) applications, such as proteomics, genomics, clinical profiling and MALDI imaging, have created a growing demand for faster instrumentation. Since the commonly used nitrogen lasers have throughput and life span limitations, diode-pumped solid-state lasers are an alternative. Unfortunately this type of laser shows clear performance limitations in MALDI in terms of sensitivity, resolution and ease of use, for applications such as thin-layer sample preparations, acceptance of various matrices (e.g. DHB for glycopeptides) and MALDI imaging. While it is obvious that the MALDI process has some dependence on the characteristics of the laser used, it is unclear which features are the most critical in determining laser performance for MALDI. In this paper we show, for the first time, that a spatially structured laser beam profile in lieu of a Gaussian profile is of striking importance. This result enabled us to design diode-pumped Nd : YAG lasers that on various critical applications perform as well for MALDI as the nitrogen lasers and in some respects even better. The modulation of the beam profile appears to be a new parameter for optimizing the MALDI process. In addition, the results trigger new questions directing us to a better understanding of the MALDI process.  相似文献   

10.
The use of a novel 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrix-assisted laser desorption/ionization (MALDI) matrix for detection and quantitative analysis of native N-linked oligosaccharides was investigated in this study. Substantial improvements in sensitivity were observed relative to the signals obtained with a traditional DHB matrix. Moreover, the morphology of the matrix crystal layer was very uniform, unlike that of DHB. This resulted in highly homogeneous sample distribution throughout the spot, allowing reproducible and consistent mass spectra to be obtained without spot-to-spot variations in signal. Here, we also demonstrate an approach for performing sensitive and accurate quantitative analysis of native N-linked glycans with this novel matrix using an internal standard method.  相似文献   

11.
The excitation of UV-absorbing MALDI matrixes with visible laser (532 nm wavelength) and the desorption/ionization of biomolecules were performed by coating the analytes doped matrix with Au thin film (5–10 nm) using ion sputtering deposition. The Au film was first ablated with the laser of higher fluence, resulting in a crater/hole about the size of the laser beam spot on the target. After a few initial laser shots, analytes and matrix related ions were observed from the crater even at lower laser fluence. Electron microscopy inspection on the laser ablated region revealed the formation of nanoparticles with sizes ranging from <10 to 50 nm. Compared with the infra-red laser (1064 nm) excitation, the visible laser produced much higher abundance of matrix radical ions, and less heating effect as measured by the thermometer molecules. The results suggest the photo-excitation and photo-ionization of matrix molecules by the visible laser, possibly assisted by the gold nanoparticles and nanostructures left on the ablated crater.  相似文献   

12.
We gauged the internal energy transfer for two dissociative ion decomposition channels in matrix-assisted laser desorption ionization (MALDI) using the benzyltriphenylphosphonium (BTP) thermometer ion [PhCH 2PPh 3] (+). Common MALDI matrixes [alpha-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5-dihydroxycinnamic acid (DHB)] were studied with nitrogen laser (4 ns pulse length) and mode-locked 3 x omega Nd:YAG laser (22 ps pulse length) excitation. Despite the higher fluence required to initiate fragmentation, BTP ions indicated lower internal energy transfer with the picosecond laser in all three matrixes. These differences can be rationalized in terms of phase explosion induced by the nanosecond laser vs a stress-confinement-driven desorption mechanism for the picosecond laser. For the two ion production channels of the BTP thermometer ion, breaking a single bond can result in the formation of benzyl/tropylium ions, F1, or triphenylphosphine ions, F2. In SA and DHB, as well as in CHCA at low fluence levels, the efficiency of these channels (expressed by the branching ratio I F1/ I F2) is moderately in favor of producing tropylium ions, 1 < I F1/ I F2 < 6. As the laser fluence is increased, for CHCA, there is a dramatic shift in favor of the tropylium ion production, with I F1/ I F2 approximately 30 for the nanosecond and the picosecond laser, respectively. This change is correlated with the sudden increase in the BTP internal energies in CHCA in the same laser fluence range. The large changes observed in internal energy deposition for CHCA with laser fluence can account for its ability to induce fragmentation in peptides more readily than SA and DHB.  相似文献   

13.
Laser-induced fluorescence spectroscopy was carried out on microcrystalline samples of three typical matrices under conditions of matrix-assisted laser desorption/ionization (MALDI). The emitted fluorescence intensity was determined as a function of incident laser fluence and a sublinear increase of the fluorescence intensity with laser fluence was found. A very good fit was obtained when the experimental fluorescence vs. fluence data were compared with a numerical model assuming that under typical MALDI fluence conditions a large fraction of molecules in the excited singlet state undergoes singlet-singlet annihilation. Throughout the fluence range relevant for MALDI, however, the experimental data could not be fit well to a model assuming resonant two-photon absorption as the process depopulating the singlet state. In a separate set of experiments, the singlet lifetimes of several typical crystalline MALDI matrices were determined and found to be considerably shorter than previously reported. While both singlet-singlet annihilation and resonant two-photon absorption have been discussed in the literature as candidates for pathways to primary matrix ion generation in MALDI, the data presented here suggest that singlet-singlet annihilation is the dominant mechanism for depopulating the singlet state in a matrix crystal excited at typical MALDI fluences.  相似文献   

14.
Matrix-assisted laser desorption/ionization hyphenated with quadrupole time-of-flight (QTOF) mass spectrometry (MS) has been used to directly determine the distribution of pharmaceuticals in rat brain tissue slices which might unravel their disposition for new drug development. Clozapine, an antipsychotic drug, and norclozapine were used as model compounds to investigate fundamental parameters such as matrix and solvent effects and irradiance dependence on MALDI intensity but also to address the issues with direct tissue imaging MS technique such as (1) uniform coating by the matrix, (2) linearity of MALDI signals, and (3) redistribution of surface analytes. The tissue sections were coated with various matrices on MALDI plates by airspray deposition prior to MS detection. MALDI signals of analytes were detected by monitoring the dissociation of the individual protonated molecules to their predominant MS/MS product ions. The matrices were chosen for tissue applications based on their ability to form a homogeneous coating of dense crystals and to yield greater sensitivity. Images revealing the spatial localization in tissue sections using MALDI-QTOF following a direct infusion of (3)H-clozapine into rat brain were found to be in good correlation with those using a radioautographic approach. The density of clozapine and its major metabolites from whole brain homogenates was further confirmed using fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) procedures.  相似文献   

15.
Phenomenological models were proposed to explain the experimentally observed dependence of protein ion yields with laser fluence in matrix-assisted laser desorption. Assuming that the illuminating laser had a Gaussian intensity profile at the sample being examined, it was possible to fit the experimental points with a model that only assumes a fluence threshold for ion production. No additional dependence of protein ion yield on illuminating fluence above the threshold value was necessary to explain the data.  相似文献   

16.
A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities “per laser shot” and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.  相似文献   

17.
Laser-induced desorption/ionization from silicon nanowires (SiNW) is an emerging method for mass spectrometry of small to medium-size molecules. In this new technique, we examined the internal energy transfer to seven benzylpyridinium thermometer ions and extracted the corresponding internal energy distributions. To explore the effect of the energy-deposition rate on the internal energy transfer, two lasers with significantly different pulse lengths (4 ns vs 22 ps) were utilized as excitation sources. A comparison of ion yields indicated that the SiNW substrates required 5-8 times less laser fluence for ion production than either matrix-assisted laser desorption/ionization (MALDI) or desorption/ionization on silicon (DIOS). In contrast however, the survival yield (SY) values showed that the internal energy transferred to the thermometer ions was more than (ps laser) or comparable to (ns laser) MALDI but it was significantly less than in DIOS. The internal energy transfer was only slightly dependent on laser fluence and on wire density. These effects were rationalized in terms of the confinement of thermal energy in the nanowires and of unimpeded three-dimensional plume expansion. Unlike in MALDI from CHCA and in perfluorophenyl-derivatized DIOS, for desorption from SiNWs the effect of laser pulse length on the internal energy transfer was found to be negligible.  相似文献   

18.
Some experimental factors affecting the resolution in glycerol infrared matrix-assisted laser desorption/ionization (IR-MALDI) time-of-flight (TOF) mass spectrometry were investigated. Loading the sample inside a cavity covered with a grid was found to improve the resolving power as reported previously, although not to the extent attainable in UV-MALDI using the same instrument. The resolving power improved as the laser spot area at the sample position got larger, becoming almost comparable with that in UV-MALDI when the spot area was a little larger than the cavity size. Reduced concentration of the ablated materials in the acceleration region with the use of the grid and large irradiation area may be responsible for the enhanced resolution. In addition, the threshold laser fluences measured in this work were lower than those reported in the literature and tended to decrease more rapidly as the irradiation area increased than predicted previously. The implication of similar threshold fluences for matrix and analyte ions is discussed in relation to the analyte ion formation mechanism.  相似文献   

19.
We observe a substantial matrix‐assisted laser desorption/ionization (MALDI) signal when irradiating femtosecond laser pulses in the near‐infrared spectral range centered around 800 nm and using standard MALDI matrices with absorption bands in the ultraviolet (UV) regime. The laser pulse energy dependence of this novel phenomenon is investigated in comparison with MALDI with near‐UV laser pulses. Our observations show that multiphoton absorption/ionization could be a major issue among the MALDI processes when the sample is irradiated with ultra‐short laser pulses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Spot size reduction and increased detection sensitivity in matrix-assisted laser desorption/ionisation (MALDI) of small molecules are accomplished by using an inexpensive and removable hydrophobic coating for MALDI targets, based on 3M Scotch Gard surface treatment. Several variations in sample preparation were explored, such as surface coating technique, identity of the matrix, solvent composition, and the type of metal support plate used. These were investigated on both uncoated and coated surfaces and their impact on spot size, crystal coverage, and sensitivity is presented here. Additionally, crystallisation behaviour obtained on coated plates is compared with that on uncoated plates using scanning electron microscope analysis. To demonstrate the potential of the new coating technique, erythromycin A and valinomycin are studied to determine the increase in detection sensitivity of coated plates in comparison to uncoated plates, and to reveal the suitability of the plates for application in combined high-performance liquid chromatography/MALDI (HPLC/MALDI), where widely varying solvent compositions and droplet volumes are observed. It is shown that enhancements in detection sensitivities correlate very well with the achieved spot size reduction. The versatility of the coated plates is also exhibited by the ease of removing the surface layer, after which the plates can be rigorously cleaned without worry about damaging the hydrophobic surface, followed by a quick reapplication of new hydrophobic coating material. This makes the non-polar coating superior to more expensive commercial hydrophobic-coated targets, which are much more delicate to clean. Furthermore, cleaning and reapplication eliminate potential carry-over effects and the easy application procedure also makes the fabrication of inexpensive, disposable MALDI targets readily possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号