首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the hydrogen desorption and structural properties of the Li-Mg-N-H systems with different LiH/Mg(NH2)2 ratios are systemically investigated. The results indicate that the system with the LiH/Mg(NH2)2 ratio of 6/3 transforms into Li2NH and MgNH, and then, the mixture forms an unknown phase by a solid-solid reaction, which presumably is the ternary imide Li2Mg(NH)2; the system with the LiH/Mg(NH2)2 ratio of 8/3 transforms into 4Li2NH and Mg3N2 after releasing H2 at T < 400 degrees C; the system with the LiH/Mg(NH2)2 ratio of 12/3 transforms into 4Li3N and Mg3N2 after releasing H2 at T > 400 degrees C, where the LiMgN phase is formed by the reaction between Li3N and Mg3N2. The characteristics of the phase transformations and the thermal gas desorption behaviors in these Li-Mg-N-H systems could be reasonably explained by the ammonia mediated reaction model, irrespective of the difference in the LiH/Mg(NH2)2 ratios.  相似文献   

2.
Mechanism of hydrogenation reaction in the Li-Mg-N-H system   总被引:1,自引:0,他引:1  
The Li-Mg-N-H system composed of 3 Mg(NH2)2 and 8 LiH reversibly desorbs/absorbs approximately 7 wt % of H2 at 120-200 degrees C and transforms into 4 Li2NH and Mg3N2 after dehydrogenation. In this work, the mechanism of the hydrogenation reaction from 4 Li2NH and Mg3N2 to 8 LiH and 3 Mg(NH2)2 was investigated in detail. Experimental results indicate that 4 Li2NH is first hydrogenated into 4 LiH and 4 LiNH2. At the next step, 4 LiNH2 decomposes into 2 Li2NH and 2 NH3, and the emitted 2 NH3 reacts with (1/2) Mg3N2 and produces the (3/2) Mg(NH2)2 phase, while the produced 2 Li2NH is hydrogenated into 2 LiH and 2 LiNH2 again. Such successive steps continue until all 4 Li2NH and Mg3N2 completely transform into 8 LiH and 3 Mg(NH2)2 by hydrogenation.  相似文献   

3.
A mechanistic understanding on the enhanced kinetics of hydrogen storage in the NaBH(4)-added Mg(NH(2))(2)-2LiH system is provided by carrying out experimental investigations associated with first-principles calculations. It is found that the operating temperatures for hydrogen desorption of the Mg(NH(2))(2)-2LiH system are reduced by introducing NaBH(4), and the NaBH(4) species seems almost unchanged during dehydrogenation/hydrogenation process. First-principles calculations reveal that the presence of NaBH(4) in the Mg(NH(2))(2)-2LiH system facilitates the formation of Mg vacancies in Mg(NH(2))(2). The appearance of Mg vacancies not only weakens the N-H bonds but also promotes the diffusion of atoms and/or ions, consequently resulting in the improvement of the reaction kinetics of hydrogen desorption/absorption of the NaBH(4)-added Mg(NH(2))(2)-2LiH system. This finding provides us with a deep insight into the role played by NaBH(4) in the Li-Mg-N-H system, as well as ideas for designing high-performance catalysts for metal-N-H-based hydrogen storage media.  相似文献   

4.
纳米晶镁铝水滑石的制备及其热分解机理   总被引:15,自引:0,他引:15  
研究了无机阻燃剂镁铝水滑石纳米晶的制备及其热分解机理.采用常压下,一步反应的液相法制备镁铝水滑石试样,用XRD和TEM测试试样的相组成和形貌,针状镁铝水滑石纳米晶体的长度约80 nm.依据DSC和DTA-TG测试结果,发现镁铝水滑石纳米晶的热分解由两个阶段组成:第一个吸热峰出现在220 ℃左右,第二个吸热峰出现在380 ℃左右.研究了反应时间对所得镁铝水滑石试样的热分解性能的影响,发现延长反应时间,镁铝水滑石试样的第一次、第二次热分解的起始温度升高,第一次热分解的失重值增大,最后剩余氧化物的量增大,从而增强镁铝水滑石阻燃剂的阻燃性能.根据不同升温速率下获得的DSC测试数据,应用Achar微分法、Šatava-Šesták积分法和Ozawa积分法对镁铝水滑石纳米晶热分解的第二个阶段进行了动力学计算和分析,确定该段的热分解机理函数积分式为(1-α)-1-1.  相似文献   

5.
We have used infrared spectroscopy to investigate the decomposition of the gas-phase (Me)(3)M:NH(3) (M = Al, Ga, In) adducts from room temperature to 573 K, at reactant concentrations in the nominal range used for Al(Ga,In)N metal organic chemical vapor deposition. At 473-523 K TMAl:NH(3) decomposes quantitatively to yield (Me(2))AlNH(2) and CH(4). Comparison of the experimental and theoretical spectra indicates that the majority of the aluminum metal organic product exists in dimer form, i.e., [(Me(2))AlNH(2)](2). The decomposition reaction exhibits unimolecular decomposition kinetics with rate constant parameters of nu = 1 x 10(12) s(-1) and E(a) = 25.7 kcal/mol. At temperatures <543 K, TMGa + NH(3) and TMIn + NH(3) mixtures are dominated by reversible adduct formation-dissociation with no detectable quantities of CH(4) produced. At 574 K a small amount of decomposition is observed in TMGa + NH(3) mixtures, which can be explained by a simple kinetic model that includes the effect of adduct equilibrium. Results demonstrate that the (Me)(3)Al:NH(3) decomposition rate is fast enough to contribute to the early stages of a concerted parasitic chemical reaction mechanism, but the (Me)(3)Ga:NH(3) decomposition rate is too slow.  相似文献   

6.
We use the density functional theory and x-ray and neutron diffraction to investigate the crystal structures and reaction mechanisms of intermediate phases likely to be involved in decomposition of the potential hydrogen storage material LiAlH(4). First, we explore the decomposition mechanism of monoclinic LiAlH(4) into monoclinic Li(3)AlH(6) plus face-centered cubic (fcc) Al and hydrogen. We find that this reaction proceeds through a five-step mechanism with an overall activation barrier of 36.9 kcal/mol. The simulated x ray and neutron diffraction patterns from LiAlH(4) and Li(3)AlH(6) agree well with experimental data. On the other hand, the alternative decomposition of LiAlH(4) into LiAlH(2) plus H(2) is predicted to be unstable with respect to that through Li(3)AlH(6). Next, we investigate thermal decomposition of Li(3)AlH(6) into fcc LiH plus Al and hydrogen, occurring through a four-step mechanism with an activation barrier of 17.4 kcal/mol for the rate-limiting step. In the first and second steps, two Li atoms accept two H atoms from AlH(6) to form the stable Li-H-Li-H complex. Then, two sequential H(2) desorption steps are followed, which eventually result in fcc LiH plus fcc Al and hydrogen: Li(3)AlH(6)(monoclinic)-->3 LiH(fcc)+Al(fcc)+3/2 H(2) is endothermic by 15.8 kcal/mol. The dissociation energy of 15.8 kcal/mol per formula unit compares to experimental enthalpies in the range of 9.8-23.9 kcal/mol. Finally, we explore thermal decomposition of LiH, LiH(s)+Al(s)-->LiAl(s)+12H(2)(g) is endothermic by 4.6 kcal/mol. The B32 phase, which we predict as the lowest energy structure for LiAl, shows covalent bond characters in the Al-Al direction. Additionally, we determine that transformation of LiH plus Al into LiAlH is unstable with respect to transformation of LiH through LiAl.  相似文献   

7.
The hydrogen desorption mechanism in the reaction from LiH + LiNH2 to Li2NH + H2 was examined by thermal desorption mass spectrometry, thermogravimetric analysis, and Fourier transform IR analyses for the products replaced by LiD or LiND2 for LiH or LiNH2, respectively. The results obtained indicate that the hydrogen desorption reaction proceeds through the following two-step elementary reactions mediated by ammonia: 2LiNH2 --> Li2NH + NH3 and LiH + NH3 --> LiNH2 + H2, where hydrogen molecules are randomly formed from four equivalent hydrogen atoms in a hypothetical LiNH4 produced by the reaction between LiH and NH3 according to the laws of probability.  相似文献   

8.
Hydrocarbon-soluble model systems for the calcium-amidoborane-ammine complex Ca(NH(2)BH(3))(2)?(NH(3))(2) were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH(2)BH(3) (R = H, Me, iPr, DIPP; DIPP = 2,6-diisopropylphenyl) with Ca(DIPP-nacnac)(NH(2))?(NH(3))(2) (DIPP-nacnac = DIPP-NC(Me)CHC(Me)N-DIPP): Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(2), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(3), Ca(DIPP-nacnac)[NH(Me)BH(3)]?(NH(3))(2), Ca(DIPP-nacnac)[NH(iPr)BH(3)]?(NH(3))(2), and Ca(DIPP-nacnac)[NH(DIPP)BH(3)]?NH(3). The crystal structure of Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3)(3) showed a NH(2)BH(3)(-) unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)-2.39(4)??) that were mainly found between NH(3) ligands and BH(3) groups. In addition, there were N-H???C interactions between NH(3) ligands and the central carbon atom in the ligand. Solutions of these calcium-amidoborane-ammine complexes in benzene were heated stepwise to 60?°C and thermally decomposed. The following main conclusions can be drawn: 1)?Competing protonation of the DIPP-nacnac anion by NH(3) was observed; 2)?The NH(3) ligands were bound loosely to the Ca(2+) ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))](∞), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))?(THF), and [Ca(DIPP-nacnac){NH(iPr)BH(3)}](2) were obtained. 3)?Independent of the nature of the substituent R in NH(R)BH(3), the formation of H(2) was observed at around 50?°C. 4)?In all cases, the complex [Ca(DIPP-nacnac)(NH(2))](2) was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single-crystal analysis. We proposed that thermal decomposition of calcium-amidoborane-ammine complexes goes through an intermediate calcium-hydride-ammine complex which eliminates hydrogen and [Ca(DIPP-nacnac)(NH(2))](2). It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal-amidoborane-ammine complexes in the solid state.  相似文献   

9.
设计合成了两种新型的以聚吡唑硼酸盐、氨基酸为配体的钒氧配合物VO[phCH2CH(NH2)COO][HB(pz)3](1)和VO(3,5-Me2pz)[HB(3,5-Me2pz)3](CH3COO)(2). 通过元素分析、红外光谱对配合物进行了表征, 并利用单晶X射线衍射技术解析了它们的结构. 非等温热分解动力学研究表明, 配合物1和2的热分解反应都是分两步进行的. 通过计算, 配合物1热分解的第一步反应的可能机理为成核与生长(n=1/4); 第二步反应的可能机理为化学反应. 其非等温动力学方程分别为, dα/dT=(A/β)e-E/RT(1/4)(1-α)[-ln(1-α)]-3 和dα/dT=(A/β)e-E/RT(1-α)2. 分解反应的表观活化能分别是223.52 和331.94 kJ·mol-1; 指前因子ln(A/s-1)分别是49.67 和57.50. 配合物2 热分解的第一步反应的可能机理为化学反应; 第二步反应的可能机理为成核与生长(n=1/2). 其非等温动力学方程分别为, dα/dT=(A/β)e-E/RT(1-α)2, 和dα/dT=(A/β)e-E/RT(1/2)(1-α)[-ln(1-α)]-1. 分解反应的表观活化能分别是300.56 和444.72 kJ·mol-1; 指前因子ln(A/s-1)分别是75.53 和92.50.  相似文献   

10.
A matrix isolation IR study of laser-ablated lithium atom reactions with H2 has been performed in solid para-hydrogen, normal hydrogen, neon, and argon. The LiH molecule and (LiH)(2,3,4) clusters were identified by IR spectra with isotopic substitution (HD, D(2), and H(2) + D(2)) and comparison to frequencies calculated by density functional theory and the MP2 method. The LiH diatomic molecule is highly polarized and associates additional H(2) to form primary (H(2))(2)LiH chemical complexes surrounded by a physical cage of solid hydrogen where the ortho and para spin states form three different primary complexes and play a role in the identification of the bis-dihydrogen complex and in characterization of the matrix cage. The highly ionic rhombic (LiH)(2) dimer, which is trapped in solid matrices, is calculated to be 22 kcal/mol more stable than the inverse hydrogen bonded linear LiH-LiH dimer, which is not observed here. The cyclic lithium hydride trimer and tetramer clusters were also observed. Although the spontaneous reaction of 2 Li and H(2) to form (LiH)(2) occurs on annealing in solid H(2), the formation of higher clusters requires visible irradiation. We observed the simplest possible chemical reduction of dihydrogen using two lithium valence electrons to form the rhombic (LiH)(2) dimer.  相似文献   

11.
程春生  秦福涛  魏振云  任忠宝  明旭 《化学学报》2012,70(10):1227-1231
氟吗啉是一种新型杀菌剂, 合成工艺热危险性和动力学研究将解决工程问题, 并保障安全生产. 采用差示扫描量热-热重分析仪(DSC-TG)测试主要原料、中间体和产品的热稳定性, 采用反应量热仪(RC1)研究反应热行为, 同时开展反应动力学研究. 研究结果显示, 主要中间体(3,4-二甲氧基苯基)(4-氟苯基)甲酮吸热分解温度为559.3 K, 乙酰吗啉吸热分解温度为478.2 K, 氟吗啉吸热分解温度为638.6 K. 氟吗啉合成反应摩尔放热量为15.44 kJ/mol, 绝热温升ΔTad为9.1 K, 本研究合成工艺的热危险性较小. 氟吗啉合成反应动力学方程为:rA=kcAa=8.34×10-3CA0.57, 对主要中间体(3,4-二甲氧基苯基)(4-氟苯基)甲酮的反应级数为0.57 级.  相似文献   

12.
The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ~0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.  相似文献   

13.
The solid-state reaction between LiNH2 and LiH potentially offers an effective route for hydrogen storage if it can be tailored to meet all the requirements for practical applications. To date, there still exists large uncertainty on the mechanism of the reaction--whether it is mediated by a transient NH3 or directly between LiNH2 and LiH. In an effort to clarify this issue and improve the reactivity, the effects of selected nitrides were investigated here by temperature-programmed desorption, X-ray diffraction, in-situ infrared analysis, and hydrogen titration. The results show that the reaction of LiNH2 with LiH below 300 degrees C is a heterogeneous solid-state reaction controlled by Li+ diffusion from LiH to LiNH2 across the interface. At the LiNH2/LiH interface, an ammonium ion Li2NH2+ and a penta-coordinated nitrogen Li2NH3 could be the intermediate states leading to the production of hydrogen and the formation of lithium imide. In addition, it is identified that BN is an efficient "catalyst" that improves Li+ diffusion and hence the kinetics of the reaction between LiNH2 and LiH. Hydrogen is fully released within 7 h at 200 degrees C with BN addition, rather than several days without the modification.  相似文献   

14.
A new ammine dual-cation borohydride, LiMg(BH(4))(3)(NH(3))(2), has been successfully synthesized simply by ball-milling of Mg(BH(4))(2) and LiBH(4)·NH(3). Structure analysis of the synthesized LiMg(BH(4))(3)(NH(3))(2) revealed that it crystallized in the space group P6(3) (no. 173) with lattice parameters of a=b=8.0002(1) ?, c=8.4276(1) ?, α=β=90°, and γ=120° at 50 °C. A three-dimensional architecture is built up through corner-connecting BH(4) units. Strong N-H···H-B dihydrogen bonds exist between the NH(3) and BH(4) units, enabling LiMg(BH(4))(3)(NH(3))(2) to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH(4))(3)(NH(3))(2)/LiBH(4) composite is able to release over 8 wt% hydrogen below 200 °C, which is comparable to that released by Mg(BH(4))(3)(NH(3))(2). More importantly, it was found that release of the byproduct NH(3) in this system can be completely suppressed by adjusting the ratio of Mg(BH(4))(2) and LiBH(4)·NH(3). This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.  相似文献   

15.
Hydrogen storage performances of a Li(2)NH-xMgNH combination system (x = 0, 0.5, 1 and 2) are investigated for the first time. It is found that the hydrogenated samples with MgNH exhibit a significant reduction in the dehydrogenation temperatures. Mechanistic investigations reveal that there is a strong dependence of the hydrogen storage reaction process on the molar ratio between MgNH and Li(2)NH. As a consequence, tuning of thermodynamics is achieved for hydrogen storage in the Li(2)NH-xMgNH system by changing the reaction routes, which is ascertained to be the primary reason for the reduction in the operating temperature for hydrogen desorption. Specifically, it is found that under 105 atm hydrogen (140-280 °C) 5.6 wt% hydrogen is reversibly stored in the Li(2)NH-0.5MgNH combination system, which is greater than in the well-investigated Mg(NH(2))(2)-2LiH system.  相似文献   

16.
对由水杨醛及其衍生物所形成的Schiff碱配合物的研究已有不少报道,其中一些配合物具有抑菌、抗癌和抗病毒活性,可作为生物氧载体的模型化合物.  相似文献   

17.
在外界环境条件恒定的情况下,反应体系NH~4ClO~4+Mg+K~2Cr~2O~7的燃烧过程是不均匀的,燃烧和光强呈周期性的强弱变化,给出了典型的化学振荡现象。本文介绍了NH~4ClO~4+Mg+K~2Cr~2O~7体系的固相振荡燃烧配方,对新配方进行了实验,研究了这个体系的固相振荡燃烧现象的非线性特性,分析了固相化学振荡的非线性化学反应动力学机理。  相似文献   

18.
The introduction of RbF into the Mg(NH2)2–2 LiH system significantly decreased its (de‐)hydrogenation temperatures and enhanced its hydrogen‐storage kinetics. The Mg(NH2)2–2 LiH–0.08 RbF composite exhibits the optimal hydrogen‐storage properties as it could reversibly store approximately 4.76 wt % hydrogen through a two‐stage reaction with the onset temperatures of 80 °C for dehydrogenation and 55 °C for hydrogenation. At 130 °C, approximately 70 % of hydrogen was rapidly released from the 0.08 RbF‐doped sample within 180 min, and the fully dehydrogenated sample could absorb approximately 4.8 wt % of hydrogen at 120 °C. Structural analyses revealed that RbF reacted readily with LiH to convert to RbH and LiF owing to the favorable thermodynamics during ball‐milling. The newly generated RbH participated in the following dehydrogenation reaction, consequently resulting in a decrease in the reaction enthalpy change and activation energy.  相似文献   

19.
New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.  相似文献   

20.
采用TG-DTG和DTA技术研究了2,2'-联吡啶-对甲氧基苯甲酸铕(Ⅲ)在静态空气中的非等温热分解过程及动力学,根据TG曲线确定了热分解过程中的中间产物及最终产物,运用微分法与积分法对非等温动力学数据进行分析,推断出第一步的动力学方程为dα/dt=Aexp(-E/RT)2(1-α)1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号