首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ~5?×?10?2 m2 or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ~1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ~1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.  相似文献   

2.
Summary A fast and simple headspace SPME sampling method has been developed for quantification of volatile aliphatic aldehydes in sunflower oil. Analysis has been performed by gas chromatography, on a 30m×0.25 mm i.d. ×0.25 μm CP-Wax 52CB column, with mass spectrometric detection. Carryover from the SPME fiber could be eliminated by heating the fiber in the injection port between runs. Response factors of all the compounds were linear for concentrations up to 100 ng μL−1. The slopes of the calibration curves decrease with the amount of saturation of the aldehydes. The average responses for unsaturated aldehydes were twice as high as those for the saturated variety. Responses for dienes were approximately one order of magnitude higher than for saturated aldehydes. Depletion of the analyte was examined by repeated extraction from the same vial. SPME was optimized—after 30 min extraction most components were found to have reached equilibration. The detection limit for the compounds studied varied between 0.1 and 1 ng μL−1. Distribution constants were determined for ten different aldehydes and Henry's constants were calculated for unsaturated aldehydes. There was a definite relationship between the response factors and the amount of saturation of the aldehydes. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

3.
In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex.  相似文献   

4.
Solid-phase microextraction (SPME) was used for the analysis of some pesticides (bromoxynil, chlorotoluron, diuron, isoproturon, 2,4-MCPA, MCPP and 2,4-D) in rainwater after derivatisation with PFBBr and gas chromatography-ion trap mass spectrometry. The derivatisation procedure was optimized by testing different methods: direct derivatisation in the aqueous phase followed by SPME extraction, on-fibre derivatisation and derivatisation in the injector. The best result was obtained by headspace coating the PDMS/DVB fibre with PFBBr for 10 min followed by direct SPME extraction for 60 min at 68 °C (pH 2 and 75% NaCl). Good detection limits were obtained for all the compounds: these ranged between 10 and 1,000 ng L−1 with a relatively high uncertainty due to the combination of derivatisation and SPME extraction steps. The optimized procedure was applied to the analysis of pesticides in rainwater and results obtained shows that this method is a fast and simple technique to assess the spatial and temporal variations of concentrations of pesticides in rainwater.  相似文献   

5.
The successful application of polypyrrole (PPY) solid-phase microextraction (SPME) coatings as both an extraction phase and a surface to enhance laser desorption/ionization (SELDI) of analytes is reported. This SPME/SELDI fiber integrates sample preparation and sample introduction on the tip of a coated optical fiber, as well as acting as the transmission medium for the UV laser light. Using ion mobility spectrometry (IMS) detection, the signal intensity was examined as a function of extraction surface area and concentration of analyte. The linear relationship between concentration and signal intensity shows potential applicability of this detection method for quantitative analysis. Extraction time profiles for the fiber, using tetraoctylammonium bromide as test analyte, illustrated that equilibrium can be reached in less than one minute. To investigate the performance of the PPY coating, the laser desorption profile was studied. The fiber was also tested using a quadrupole time-of-flight (Q-TOF) mass spectrometer with leucine enkephalin as test analyte. Since no matrix was used, mass spectra free from matrix background were obtained. This novel SPME/SELDI fiber is easy to manufacture, and is suitable for studying low-mass analytes because of the intrinsic low background. These findings suggest that other types of conductive polymers could also be used as an extraction phase and surface to enhance laser desorption/ionization in mass spectrometry.  相似文献   

6.
The organic gunshot residues (OGSRs), specifically methyl centralite (MC; 1,3-dimethyl-1,3-diphenylurea), ethyl centralite (EC; 1,3-diethyl-1,3-diphenylurea), 2,4-DNT (2,4-dinitrotoluene), and TNT (trinitrotoluene), are characteristic compounds for which forensic analysts test determining if a person has discharged a firearm. A set of 200 samples from 50 shooters were collected as part of the validation study. Pistol 9 mm and special revolver .38 were fired at indoor and outdoor shooting ranges. The development of a methodology based on direct analysis of samples-time of flight-mass spectrometry (DSA-TOF-MS) made it possible to identify the main components of organic shot residues, which gave the possibility to introduce a new method of analysis of shot residues in the Chilean supply area. The DSA-TOF-MS provided extensive information on the composition of the shot residues: MC, EC, 2,4-DNT, and TNT. Samples taken from the trigger hands required minimal sample preparation that reduced analyses time. With the implementation of new alternative analytical methodologies, a great step would be taken in the analysis of OGSRs, because now there is no such technique for its analysis in Chile, and the results would also complement the existing inorganic elemental analyses generated during a gunshot.  相似文献   

7.
Quantification of trace concentrations of transformation products of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in water requires complex analytical instrumentation and tedious sample preparation. The goal of this research was to develop a simple and automated method for sensitive quantification of UDMH transformation products in water using headspace (HS) solid-phase microextraction (SPME) in combination with GC-MS and GC-MS/MS. HS SPME is based on extraction of analytes from a gas phase above samples by a micro polymer coating followed by a thermal desorption of analytes in a GC inlet. Extraction by 85 µm Carboxen/polydimethylsiloxane fiber at 50 °C during 60 min provides the best combination of sensitivity and precision. Tandem mass spectrometric detection with positive chemical ionization improves method accuracy and selectivity. Detection limits of twelve analytes by GC-MS/MS with chemical ionization are about 10 ng L?1. GC-MS provides similar detection limits for five studied analytes; however, the list of analytes detected by this method can be further expanded. Accuracies determined by GC-MS were in the range of 75–125% for six analytes. Compared to other available methods based on non-SPME sample preparation approaches (e.g., liquid–liquid and solid-phase extraction), the developed method is simpler, automated and provides lower detection limits. It covers more UDMH transformation products than available SPME-based methods. The list of analytes could be further expanded if new standards become available. The developed method is recommended for assessing water quality in the territories affected by space activities and other related studies.  相似文献   

8.
In a study aiming to characterize cork off‐flavour for quality control purposes, chloroanisoles were extracted and identified from cork stoppers by means of solid‐phase microextraction (SPME)–gas chromatography–ion‐trap mass spectrometry (GC–ITMS). An experimental design procedure was used to investigate the effects of some experimental parameters on the SPME of 2,4‐dichloroanisole, 2,6‐dichloroanisole, and 2,4,6‐trichloroanisole from cork stoppers by using a Carboxen‐PDMS 75 μm fibre. Variables such as extraction temperature, extraction time, and percentage of ethanol added to the matrix were optimized to improve extraction efficiency of chloroanisoles onto SPME fibre. Instrumental analysis was performed by GC–ITMS in the MS/MS mode. Preliminary analyses on standard solutions allowed selection of the appropriate ionization mode (i. e. electron impact or chemical ionization), providing for each analyte the highest instrumental response. In order to find polynomial functions describing the relationships between variables and responses, the analytical responses, i.e. the chromatographic peak areas, were processed by using the backward multiple regression analysis. For all the analytes the operating conditions providing the highest extraction yield inside the experimental domain considered were found.  相似文献   

9.
Summary Solid-phase microextraction (SPME) is a solvent-free sample-preparation technique that enables isolation and pre-concentration of analytes from a sample on a thin film coating a fused-silica fiber. In this study SPME coupled with microcolumn liquid chromatography (micro LC) has been used for the determination of four tricyclic antidepressants (amitriptyline, imipramine, nortriptyline, and desipramine) in human urine. SPME conditions which affect extraction efficiency were optimized, and under the optimum conditions the system was a few hundred times more sensitive than direct LC analysis without SPME. For amitriptyline the detection limit was 3 ng mL−1 and the calibration curve was linear in the range of 5–500 ng mL−1. The SPME-micro LC method has been applied to the analysis of amitriptyline in patient’s urine.  相似文献   

10.
The sol-gel technology is applied for the preparation of solid-phase microextraction (SPME) fiber. The fiber demonstrates high thermal stability, efficient extraction rate and the selectivity for non-polar or low-polar analytes. Efficient SPME-GC-FID analyses of benzenetoluene-ethylbenzene-xylenes (BTEXs) and low-polar halocarbon were achieved by the sol-gel coated DSDA-DDBT-TiO2 fiber. Some parameters of the SPME fiber for the determination of halocarbon in aqueous sample were investigated.  相似文献   

11.
A rapid, inexpensive and solvent-free method for the simultaneous determination of the polyamide plasticizer N-butylbenzenesulfonamide (NBBS) and the widely used pharmaceutical Ibuprofen by solid phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MSD) in wastewater samples was developed. Besides the optimized analytical conditions, results of investigations with varying analytical parameters are reported. Problems, which may occur during the analytical procedure (e.g. salt deposits, adsorption phenomena, carry-over), are discussed. For the determination of Ibuprofen, it is important to carry out the extraction under acidic conditions with sufficiently buffered samples; the GC/MSD system must be very clean and well maintained. SPME allows an extraction of Ibuprofen without derivatization of its carboxylic group. For quantification in complex matrices, the standard addition technique is necessary. Limit of detection and limit of determination are 0.1 μg/L for both analytes. NBBS and Ibuprofen were detected in several raw and treated wastewater samples from municipal wastewater treatment plants in the range from < 0.1 to 3.5 μg/L. Received: 13 March 1998 / Revised: 16 June 1998 / Accepted: 19 June 1998  相似文献   

12.
Helaleh MI  Fujii S  Korenaga T 《Talanta》2001,54(6):1039-1047
In solid phase micro-extraction (SPME), the analyte is partitioned between the coating and the sample and then desorption of the concentrated analyte is followed by GC-MS, where the analytes are thermally desorbed and subsequently separated on the column and quantified by the detector. The SPME method preserves all the advantages, such as simplicity, low cost, on site sampling and does not require solvents. Poly(acrylate) coating fibers have been developed for the extraction of phenols (such as 4-tert-butylphenol, 2,4-dichlorophenol, 4-n-pentylphenol, 4-n-hexylphenol, 4-tert-octylphenol, 4-n-heptylphenol, 4-n-nonylphenol, 4-n-octylphenol, pentachlorophenol and bisphenol A) in different water samples. The precision of the HS-SPME method ranges from 3–12% RSDs, depending on the compounds analyzed. More accurate results were obtained by HS-SPME with acidification and salting out, where the fiber is located above the liquid sample. The extraction period was 60 min, followed by desorption for 5 min at 300°C. After the analytes were completely desorbed, 1 μl of bis(trimethylsilyl)trifluoroacetamide (BSTFA) was injected by ordinary GC-MS injection. The trimethylsilylate peaks were improved significantly compared with free phenol peaks. The addition of salt (saturated sodium chloride) and acidification by hydrochloric acid (pH 2.0) were found to be very important for enhancing the partitioning of the polar phenols into the polymer coating and preventing ionization of the analytes. The method is capable of limits of detection of subparts per billion of the total phenols extracted from environmental water samples.  相似文献   

13.
Ion mobility spectrometry (IMS) is routinely used in screening checkpoints for the detection of explosives and illicit drugs but it mainly relies on the capture of particles on a swab surface for the detection. Solid phase microextraction (SPME) has been coupled to IMS for the preconcentration of explosives and their volatile chemical markers and, although it has improved the LODs over a standalone IMS, it is limited to sampling in small vessels by the fiber geometry. Novel planar geometry SPME devices coated with PDMS and sol-gel PDMS that do not require an additional interface to IMS are now reported for the first time. The explosive, 2,4,6-trinitrotoluene (TNT), is sampled with the planar SPME reaching extraction equilibrium faster than with fiber SPME, concentrating detectable levels of TNT in a matter of minutes. The surface area, capacity, extraction efficiency, and LODs are also improved over fiber SPME allowing for sampling in larger volumes. The volatile chemical markers, 2,4-dinitrotoluene, cyclohexanone, and the taggant 4-nitrotoluene have also been successfully extracted by planar SPME and detected by IMS at mass loadings below 1 ng of extracted analyte on the planar device for TNT, for example.  相似文献   

14.
Optimization of the SPME device design for field applications   总被引:2,自引:0,他引:2  
Solid Phase Microextraction (SPME) is a powerful tool for field investigations. With the help of a portable gas chromatograph it can be used for fast analysis directly on-site, or it can be utilized for field sampling and then transported to the laboratory for instrumental analysis. In the latter case, it is important for the reliability of the results that losses of volatiles and contamination of the fiber during storage and transport are minimized. A number of dedicated devices, designed and built for SPME field sampling and storage, have been developed and tested. Sealing capacity of the prototypes was investigated by storing compounds ranging in volatility from methylene chloride to 1,3-dichlorobenzene on selected SPME fibers (100 μm PDMS, 65 μm PDMS/DVB and 75 μm Carboxen/PDMS) at different temperatures. Significant differences were noticed in storage capacity from coating to coating. A comparison between the field samplers optimized in this study and the field sampler commercially available from Supelco revealed advantages and limitations of each of the designs. A gas-tight valve syringe (50 μL SampleLock by Hamilton), modified in order to accommodate the SPME fiber, had the best storage capacity for very volatile compounds. With this device, over 80% of the initial amount of methylene chloride was retained by the 100 μm PDMS fiber after 24 h of refrigerated storage, which is a very good result considering that the PDMS coating is characterized by very low storage capacity for volatiles. Field sampling investigations with the SPME prototypes confirmed the usefulness of these devices for field analysis. Received: 9 November 1998 / Accepted: 15 January 1999  相似文献   

15.
Applications of solid-phase microextraction in food analysis   总被引:21,自引:0,他引:21  
Food analysis is important for the evaluation of the nutritional value and quality of fresh and processed products, and for monitoring food additives and other toxic contaminants. Sample preparation, such as extraction, concentration and isolation of analytes, greatly influences the reliable and accurate analysis of food. Solid-phase microextraction (SPME) is a new sample preparation technique using a fused-silica fiber that is coated on the outside with an appropriate stationary phase. Analyte in the sample is directly extracted to the fiber coating. The SPME technique can be used routinely in combination with gas chromatography (GC), GC–mass spectrometry (GC–MS), high-performance liquid chromatography (HPLC) or LC–MS. Furthermore, another SPME technique known as in-tube SPME has also been developed for combination with LC or LC–MS using an open tubular fused-silica capillary column as an SPME device instead of SPME fiber. These methods using SPME techniques save preparation time, solvent purchase and disposal costs, and can improve the detection limits. This review summarizes the SPME techniques for coupling with various analytical instruments and the applications of these techniques to food analysis.  相似文献   

16.
Optimization of the SPME device design for field applications   总被引:1,自引:0,他引:1  
Solid Phase Microextraction (SPME) is a powerful tool for field investigations. With the help of a portable gas chromatograph it can be used for fast analysis directly on-site, or it can be utilized for field sampling and then transported to the laboratory for instrumental analysis. In the latter case, it is important for the reliability of the results that losses of volatiles and contamination of the fiber during storage and transport are minimized. A number of dedicated devices, designed and built for SPME field sampling and storage, have been developed and tested. Sealing capacity of the prototypes was investigated by storing compounds ranging in volatility from methylene chloride to 1,3-dichlorobenzene on selected SPME fibers (100 μm PDMS, 65 μm PDMS/DVB and 75 μm Carboxen/PDMS) at different temperatures. Significant differences were noticed in storage capacity from coating to coating. A comparison between the field samplers optimized in this study and the field sampler commercially available from Supelco revealed advantages and limitations of each of the designs. A gas-tight valve syringe (50 μL SampleLock by Hamilton), modified in order to accommodate the SPME fiber, had the best storage capacity for very volatile compounds. With this device, over 80% of the initial amount of methylene chloride was retained by the 100 μm PDMS fiber after 24 h of refrigerated storage, which is a very good result considering that the PDMS coating is characterized by very low storage capacity for volatiles. Field sampling investigations with the SPME prototypes confirmed the usefulness of these devices for field analysis. Received: 9 November 1998 / Accepted: 15 January 1999  相似文献   

17.
A carbon-coated fiber for solid-phase microextraction (SPME) has been prepared from powdered activated carbon (PAC) and a fused-silica fiber. Scanning electron microscopy of the coating revealed the carbon particles were uniformly distributed on the surface of the fiber substrate. Efficient extraction of BTEX (benzene, toluene, ethylbenzene, p-xylene, and o-xylene) and halocarbons (chloroform, trichloroethylene, and carbon tetrachloride), with short extraction and desorption times, was achieved by use of the coated fiber. The maximum working temperature of the coated fiber was 300 °C and the lifetime was over 140 desorption operations at 260 °C. Limits of quantification (LOQ) of the SPME method for the eight analytes ranged from 0.01 to 0.94 μg L−1, and relative standard deviations (RSD) were below 7.2% (n=6). Recoveries were 87.9–113.4% when the method was applied to the analysis of BTEX and the halocarbons in real aqueous samples. An erratum to this article is available at .  相似文献   

18.
Solid-phase microextraction (SPME) represents a very simple and rapid method for the extraction of organophosphorus, triazine and 2,6-dinitroaniline pesticides from aqueous samples without making use of any solvents. The same fiber can be used repeatedly. Moreover, a sample volume as small as 3 mL can be employed with no loss in sensitivity. 34 compounds have been extracted from aqueous samples by SPME using a 85 m polyacrylate fiber. For organophosphorus pesticides, a 100 m polydimethylsiloxane fiber has been used additionally for comparison. The fibers were directly introduced into the heated split/splitless injector of the gas chromatograph and determined using a nitrogen-phosphorus detector. The method was evaluated with respect to the limit of detection (LOD), linearity and precision. The limit of detection (LOD) depends on the compound and varies from 0.005–0.09 g/L. The method is linear over at least three orders of magnitude with coefficients of correlation usually >0.999. For triazines and 2,6-dinitroanilines the coefficient of variation (precision) is <8% while for organophosphorus compounds it may reach values up to 18% (however, if the latter compounds are extracted using the polydimethylsiloxane phase considerably higher precision is achieved). The partitioning of the analyte between the aqueous phase and the polymeric phase depends on the hydrophobicity of the compound as expressed by the octanol/water partitioning coefficient (Pow). For triazines it was shown that there is a linear dependence of the logarithm of the analyte response on the log(Pow) i.e. the higher the hydrophobicity, the higher the affinity of the analytes to the polymeric phase of the fiber and the higher the response. Salt addition has a strong effect on the extraction efficiency. This effect increases with decreasing hydrophobicity (increasing polarity) of the compound. The triazines ametryn, atrazine, propazine, simazine and simetryn have been identified in a ground water well sample by SPMEGC/NPD.  相似文献   

19.
The equilibrium headspace above several military-grade explosives was sampled using solid phase microextraction fibers and the sorbed analytes determined using gas chromatography with an electron capture detector (GC-ECD). The major vapors detected were the various isomers of dinitrotoluene (DNTs), dinitrobenzene (DNBs), and trinitrotoluene (TNTs), with 2,4-DNT and 1,3-DNB often predominating. Although 2,4,6-TNT made up from 50 to 99% of the solid explosive, it was only a minor component of the equilibrium vapor. The flux of chemical signatures from intact land mines is thought to originate from surface contamination and evolution of vapors via cracks in the casing and permeation through polymeric materials. The levels of external contamination were determined on a series of four types of Yugoslavian land mines (PMA-1A, PMA2, TMA5 and TMM1). The flux into air as a function of temperature was determined by placing several of these mines in Tedlar bags and measuring the mass accumulation on the walls of the bags after equilibrating the mine at one of five temperatures. TNT was a major component of the surface contamination on these mines, yet it accounted for less than 10% of the flux for the three plastic-cased mines, and about 33% from the metal antitank mine (TMM1). Either 2,4-DNT or 1,3-DNB produced the largest vapor flux from these four types of land mines. The environmental stability of the most important land mine signature chemicals was determined as a function of temperature by fortifying soils with low aqueous concentrations of a suite of these compounds and analyzing the remaining concentrations after various exposure times. The kinetics of loss was not of first order in analyte concentration, indicating that half-life is concentration dependent. At 23 degrees C, the half life of 2,4,6-TNT, with an initial concentration of about 0.5 mg kg(-1), was found to be only about 1 day. Under identical conditions, the half-life of 2,4-DNT was about 25 days. A research minefield was established and a number of these same four mine types were buried. Soil samples were collected around several of these mines at several time periods after burial and the concentration of signature chemicals determined by acetonitrile extraction and GC-ECD analysis. Relatively high concentrations of 2,4,6-TNT and 2,4-DNT were found to have accumulated beneath a TMA5 antitank mine, with lower concentrations in the soil layers between the mine and the surface. Signatures were distributed very heterogeneously in surface soils, and concentrations were very low (low mug kg(-1) range). Lower, but detectable, concentrations of signatures were detectable irregularly in soils near the PMA-1A mines in contrast to the TMA5 mines. Concentrations of signature chemicals were generally below detection limits (<1 mug kg(-1)) near the TMM1 and PMA-2 mines, even 8 months after burial.  相似文献   

20.
In this work, a graphene composite was coated onto etched stainless‐steel wire through a sol–gel technique and it was used as a solid‐phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, 1,2‐dichlorobenzene, and 1,2,4‐trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 μg/L for 1,2,4‐trichlorobenzene and from 2.5 to 500.0 μg/L for chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, and 1,2‐dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 μg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 μg/L were from 76.0 to 104.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号