共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A two‐dimensional depth‐integrated numerical model is developed using a fourth‐order Boussinesq approximation for an arbitrary time‐variable bottom boundary and is applied for submarine‐landslide‐generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher‐order perturbation analysis using the expanded form of velocity components. A sixth‐order multi‐step finite difference method is applied for spatial discretization and a sixth‐order Runge–Kutta method is applied for temporal discretization of the higher‐order depth‐integrated governing equations and boundary conditions. The present model is validated using available three‐dimensional experimental data and a good agreement is obtained. Moreover, the present higher‐order model is compared with fully potential three‐dimensional models as well as Boussinesq‐type multi‐layer models in several cases and the differences are discussed. The high accuracy of the present numerical model in considering the nonlinearity effects and frequency dispersion of waves is proven particularly for waves generated in intermediate and deeper water area. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
4.
Song Fu Zhixiang Xiao Haixin Chen Yufei Zhang Jingbo Huang 《International Journal of Heat and Fluid Flow》2007,28(6):1379-1390
In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5° angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k–ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements. 相似文献
5.
Coupling methods between finite element–based Boussinesq‐type wave and particle‐based free‐surface flow models 下载免费PDF全文
Naoto Mitsume Aaron S. Donahue Joannes J. Westerink Shinobu Yoshimura 《国际流体数值方法杂志》2018,88(3):141-168
We develop one‐way coupling methods between a Boussinesq‐type wave model based on the discontinuous Galerkin finite element method and a free‐surface flow model based on a mesh‐free particle method to strike a balance between accuracy and computational cost. In our proposed model, computation of the wave model in the global domain is conducted first, and the nonconstant velocity profiles in the vertical direction are reproduced by using its results. Computation of the free‐surface flow is performed in a local domain included within the global domain with interface boundaries that move along the reproduced velocity field in a Lagrangian fashion. To represent the moving interfaces, we used a polygon wall boundary model for mesh‐free particle methods. Verification and validation tests of our proposed model are performed, and results obtained by the model are compared with theoretical values and experimental results to show its accuracy and applicability. 相似文献
6.
Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches 总被引:2,自引:0,他引:2
Zhixiang Xiao Yufei Zhang Jingbo Huang Haixin Chen Song Fu 《Acta Mechanica Sinica》2007,23(4):369-382
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated
flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the
detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the
SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation
of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode
for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid
methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme
with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel
with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried
out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting
for the effect on grids and fundamental turbulence models, is obtained for the separation flows.
The project supported by the National Natural Science Foundation of China (10502030 and 90505005). 相似文献
7.
A novel approach that embeds the Boussinesq‐type like equations into an implicit non‐hydrostatic model (NHM) is developed. Instead of using an integration approach, Boussinesq‐type like equations with a reference velocity under a virtual grid system are introduced to analytically obtain an analytical form of pressure distribution at the top layer. To determine the size of vertical layers in the model, a top‐layer control technique is proposed and the reference location is employed to optimize linear wave dispersion property. The efficiency and accuracy of this NHM with Boussinesq‐type like equations (NHM‐BTE) are critically examined through four free‐surface wave examples. Overall model results show that NHM‐BTE using only two vertical layers is capable of accurately simulating highly dispersive wave motion and wave transformation over irregular bathymetry. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
Weilin Zheng Fan Xie Chao Yan 《International Journal of Computational Fluid Dynamics》2019,33(1-2):10-22
A new hybrid RANS/LES approach with scale-adaptive capabilities is developed. The blending function in the SST model is adopted to prevent the invasion of the von Karman length scale to the RANS region, and the compressibility correction proposed by Wilcox is incorporated to produce a realistic shear layer development in compressible flows. The new model is validated for a subcritical flow past a circular cylinder and a supersonic base flow. Time-averaged turbulent statistics predicted by the new model show fairly good agreement with the experimental data, slight improvements over DES simulations, and are much better than SAS results. The main advantage of the new model over the DES method is that the distribution of the blending function reflects local vortex structures instead of grid spacing in the turbulent wake. The sequence of the effect intensity of the compressibility correction from strong to weak is SAS, the new model and DES. 相似文献
9.
Improvement of moving particle semi‐implicit method for simulation of progressive water waves 下载免费PDF全文
Precise simulation of the propagation of surface water waves, especially when involving breaking wave, takes a significant place in computational fluid dynamics. Because of the strong nonlinear properties, the treatment of large surface deformation of free surface flow has always been a challenging work in the development of numerical models. In this paper, the moving particle semi‐implicit (MPS) method, an entirely Lagrangian method, is modified to simulate wave motion in a 2‐D numerical wave flume preferably. In terms of consecutive pressure distribution, a new and simple free surface detection criterion is proposed to enhance the free surface recognition in the MPS method. In addition, a revised gradient model is deduced to diminish the effect of nonuniform particle distribution and then to reduce the numerical wave attenuation occurring in the original MPS model. The applicability and stability of the improved MPS method are firstly demonstrated by the calculation of hydrostatic problem. It is revealed that these modifications are effective to suppress the pressure oscillation, weaken the local particle clustering, and boost the stability of numerical algorithm. It is then applied to investigate the propagation of progressive waves on a flat bed and the wave breaking on a mild slope. Comparisons with the analytical solutions and experimental results indicate that the improved MPS model can give better results about the profiles and heights of surface waves in contrast with the previous MPS models. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
10.
Combining mesh‐less finite difference method and least square approximation, a new numerical model is developed for water wave propagation model in two horizontal dimensions. In the numerical formulation of the method, the approximation of the unknown functions and their derivatives are constructed on a set of nodes in a local circular‐shaped region. The Boussinesq equations studied in this paper is a fully nonlinear and highly dispersive model, which is composed of the exact boundary conditions and the truncated series expansion solution of the Laplace equation. The resultant system involves a sparse, unsymmetrical matrix to be solved at each time step of the simulation. Matrix solutions are studied to reduce the computing resource requirements and improve the efficiency and accuracy. The convergence properties of the present numerical method are investigated. Preliminary verifications are given for nonlinear wave shoaling problems; the numerical results agree well with experimental data available in the literature. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES. 相似文献
12.
Investigation of the sensitivity of turbulent closures and coupling of hybrid RANS‐LES models for predicting flow fields with separation and reattachment 下载免费PDF全文
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
14.
This work presents a numerical model designed for the simulation of water‐wave impacts on a structure when aeration of the liquid phase is considered. The model is based on a multifluid Navier–Stokes approach in which all fluids are assumed compressible. The numerical method is based on a finite volume algorithm in space and a second order Runge–Kutta method in time. A validation of this model is performed. It shows a good accuracy for acoustic and shock wave propagation in a bubbly liquid and for wave breaking. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
A σ‐coordinate non‐hydrostatic model, combined with the embedded Boussinesq‐type‐like equations, a reference velocity, and an adapted top‐layer control, is developed to study the evolution of deep‐water waves. The advantage of using the Boussinesq‐type‐like equations with the reference velocity is to provide an analytical‐based non‐hydrostatic pressure distribution at the top‐layer and to optimize wave dispersion property. The σ‐based non‐hydrostatic model naturally tackles the so‐called overshooting issue in the case of non‐linear steep waves. Efficiency and accuracy of this non‐hydrostatic model in terms of wave dispersion and nonlinearity are critically examined. Overall results show that the newly developed model using a few layers is capable of resolving the evolution of non‐linear deep‐water wave groups. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
17.
Time‐accurate stabilized finite‐element model for weakly nonlinear and weakly dispersive water waves
Introduction of a time‐accurate stabilized finite‐element approximation for the numerical investigation of weakly nonlinear and weakly dispersive water waves is presented in this paper. To make the time approximation match the order of accuracy of the spatial representation of the linear triangular elements by the Galerkin finite‐element method, the fourth‐order time integration of implicit multistage Padé method is used for the development of the numerical scheme. The streamline‐upwind Petrov–Galerkin (SUPG) method with crosswind diffusion is employed to stabilize the scheme and suppress the spurious oscillations, usually common in the numerical computation of convection‐dominated flow problems. The performance of numerical stabilization and accuracy is addressed. Treatments of various boundary conditions, including the open boundary conditions, the perfect reflecting boundary conditions along boundaries with irregular geometry, are also described. Numerical results showing the comparisons with analytical solutions, experimental measurements, and other published numerical results are presented and discussed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
18.
19.
H. Johnsgard 《国际流体数值方法杂志》1999,31(8):1321-1331
In the present paper, the numerical method for the three‐dimensional run‐up, given in Johnsgard and Pedersen [‘A numerical model for three‐dimensional run‐up’, Int. J. Numer. Methods Fluids, 24 , 913–931 (1997)], is extended to include wave breaking. In the fundamental problem of run‐up of a uniform bore, the present model is compared with analytical solutions from the literature. The numerical solutions converge, but very slowly. This is not due to the numerical model, but rather to the structure of the solutions themselves. Numerical results for two realistic but simplified tsunami cases are also presented. In the first case, two‐dimensional simulations are performed concerning the run‐up of a tsunami in Portugal, in the second case, the three dimensional wave pattern generated after a slide in Tafjord, Norway in 1931, is studied. A discussion of different aspects of the model is summarized at the end of the paper. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
20.
A hybrid scheme composed of finite‐volume and finite‐difference methods is introduced for the solution of the Boussinesq equations. While the finite‐volume method with a Riemann solver is applied to the conservative part of the equations, the higher‐order Boussinesq terms are discretized using the finite‐difference scheme. Fourth‐order accuracy in space for the finite‐volume solution is achieved using the MUSCL‐TVD scheme. Within this, four limiters have been tested, of which van‐Leer limiter is found to be the most suitable. The Adams–Basforth third‐order predictor and Adams–Moulton fourth‐order corrector methods are used to obtain fourth‐order accuracy in time. A recently introduced surface gradient technique is employed for the treatment of the bottom slope. A new model ‘HYWAVE’, based on this hybrid solution, has been applied to a number of wave propagation examples, most of which are taken from previous studies. Examples include sinusoidal waves and bi‐chromatic wave propagation in deep water, sinusoidal wave propagation in shallow water and sinusoidal wave propagation from deep to shallow water demonstrating the linear shoaling properties of the model. Finally, sinusoidal wave propagation over a bar is simulated. The results are in good agreement with the theoretical expectations and published experimental results. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献