共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
V. Tigoiu 《ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik》2000,80(6):423-428
This paper shows that a third grade fluid (different from the model employed by Fosdick and Rajagopal , see Tigoiu [6]) has a unique solution when experiences a weakly perturbed flow and the rest state is asymptotically stable. This result is not in contradiction with the result obtained by Joseph , but it proves the limit in the application of the representation theorem of Coleman and Noll . 相似文献
3.
This paper examines the combined effects of a transverse magnetic field and variable viscosity on unsteady flow of a reactive third‐grade electrically conducting fluid and heat transfer in a channel with convective cooling at the surface. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi‐implicit finite‐difference scheme. Both numerical and graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system. It is in general noted that those parameters that increase/decrase one flow quantity (velocity or temperature) also lead to the increase/decrease respectively of the other quantity. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study.The disk impinges the oncoming flow with a time-dependent axial velocity.The three-dimensional axisymmetric boundary-layer flow is described by the Navier-Stokes equations.The governing equations are solved numerically,and two distinct similarity solution branches are obtained.Both solution branches exhibit different flow patterns.The upper branch solution exists for all values of the impinging parameter β and the rotating parameter.However,the lower branch solution breaks down at some moderate values of β.The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β.The results of the velocity profile,the skin friction,and the stream lines are demonstrated through graphs and tables for both solution branches.The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction. 相似文献
5.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
6.
The present investigation derives the exact and series solutions for steady thin film flow of a third‐grade fluid. The series solution is constructed by a homotopy analysis method. The obtained solutions are compared and an excellent agreement between these is achieved. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
This study describes the influence of mass transfer on the steady two‐dimensional magnetohydrodynamic boundary layer flow of a Jeffery fluid bounded by a stretching sheet. A uniform magnetic field in the presence of chemical reaction is applied. The arising nonlinear partial differential equations are reduced to nonlinear ordinary differential equations by similarity variables. Similar solutions of velocity and concentration fields are derived by a homotopy analysis method. The values of surface mass transfer and gradient of mass transfer are also tabulated. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
9.
10.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
In the present article, we have studied the effects of inclined magnetic field on the peristaltic flow of Jeffrey fluid through the gap between two coaxial inclined tubes. The inner tube is rigid, whereas the outer tube has sinusoidal wave traveling down its wall. The governing equations are simplified using long wave length and low Reynolds number approximations. Exact and numerical solutions have been derived for velocity profile. The expressions for pressure rise and friction force are calculated using numerical integration. Graphical results and trapping phenomenon is presented at the end of the article to see the physical behavior of different parameters. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
In this work, we studied the peristaltic flow of a Jeffrey‐six constant fluid in a uniform tube. The governing equations of the Jeffrey‐six constant fluid were simplified by using the assumptions of long wave length and low Reynolds number approximation. The simplified form of equations were solved using the perturbation, homotopy analysis and finite difference methods. The comparison of the three solutions are shown graphically. The variation of pressure rise and frictional forces with the different parameters were also examined numerically. Results are presented at the end of the article. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
The heat transfer analysis on the laminar flow of an incompressible third grade fluid through a porous flat channel is examined. The lower plate is assumed to be at a higher temperature than the upper plate. Analytical solution for temperature distribution is obtained for various values of the controlling parameters and discussed. The obtained analytical solution is also compared with the numerical solution. The comparison shows the fact that the accuracy is remarkable. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
The magnetohydrodynamic(MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated.The governing partial differential equations are converted into the ordinary differential equations by suitable transformations.The transformed equations are solved by the homotopy analysis method(HAM).The expressions for square residual errors are defined,and the optimal values of convergencecontrol parameters are selected.The dimensionless velocity and temperature fields are examined for various dimensionless parameters.The skin friction coefficient and the Nusselt number are tabulated to analyze the effects of dimensionless parameters. 相似文献
15.
In this paper, we have proposed a time marching intregral equation method which does not have the limitation of the time linearized
integral equation method in that the latter method can not satisfactorily simulate the shock-wave motions. Firstly, a model
problem—one dimensional initial and boundary value wave problem is treated to clarify the basic idea of the new method. Then
the method is implemented for 2-D and 3-D unsteady transonic flow problems. The introduction of the concept of a quasi-velocity-potential
simplifies the time marching integral equations and the treatment of trailing vortex sheet condition. The numerical calculations
show that the method is reasonable and reliable. 相似文献
16.
Evolutionary algorithms mimic the process of natural evolution governed by the ‘survival of the fittest’ principle. In this work, a genetic algorithm (GA) is successfully used to solve problems in potential flow in a gradual contraction, viscous flow over a backward facing step, and non‐Newtonian flow using the power law model. Specifically, the GA heuristically searches the domain for potential solutions, precluding many convergence difficulties associated with the stiffness of a problem. The GA was able to solve problems that the gradient‐based method could not mainly because of its relative indifference to regions of high gradients when performing the search and that systems of discretized equations are never actually solved. The GA exhibited excellent scalability properties for solving problems with a large number of nodes. These results show evolutionary techniques to be of great utility in solving stiff problems in fluid flow. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
M.B. Akgül 《International Journal of Non》2008,43(9):985-992
Electro-osmotic flow of a third grade fluid between micro-parallel plates is considered. The equations of motion are derived and made dimensionless. Approximate analytical solutions are obtained by perturbation techniques. Constant viscosity and temperature dependent viscosity (Reynolds model) cases are treated separately. Numerical solutions of the equations are also obtained. Influences of non-Newtonian parameter, Joule heating effect, viscosity index and electro-kinetic effect on the velocity and temperature profiles are shown. Approximate and numerical solutions are contrasted. 相似文献
18.
M. YürüsoyM. Pakdemirli 《International Journal of Non》2002,37(2):187-195
The flow of a third-grade fluid in a pipe with heat transfer is considered. Constant viscosity, Reynold's model viscosity and Vogel's model viscosity cases are treated separately. Approximate analytical solutions are presented for each case using perturbations. The criteria for which the solutions are valid are determined for the dimensionless parameters involved. The analytical solutions are contrasted with the finite difference solutions given in Massoudi and Christie (Int. J. Non-Linear Mech. 30 (1995) 687-699) and within admissible parameter range, a close match is achieved. 相似文献
19.
An exact analytic solution of the unsteady Navier–Stokes equations is obtained for the flow caused by the non-coaxial rotations of a porous disk and a fluid at infinity. The porous disk is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous disk is also discussed. Further, it is shown that a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. In addition, the flow due to porous oscillating disk and a fluid at infinity rotating about an axis parallel to the z-axis is attempted as a second problem.
Sommario. Si studia il flusso non stazionario prodotto dall'oscillazione di un disco poroso in un fluido e si fornisce una soluzione analitica delle equazioni di Navier–Stokes. Si discute l'effetto di una suzione/iniezione e di una variazione sull'ampiezza della velocità' di oscillazione. Infine si studia il flusso dovuto alle oscillazioni non coassiali di un disco poroso e di un fluido all'infinito. 相似文献
20.