首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single‐walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX and cyclic voltammetry. The EPPGE‐SWCNT‐PB platform exhibited enhanced electron transport and catalytic efficiency towards the oxidation of Diethylaminoethanethiol (DEAET) and hydrazine compared with the other electrodes studied. The EPPGE‐SWCNT‐PB showed good electrochemical stability in the analytical solution, showing limit of detection in the micromolar range and catalytic rate constant of 3.71×106 and 7.56×106 cm3 mol?1 s?1 for DEAET and hydrazine respectively. The adsorption properties of these analytes that impact on their detection at the SWCNT‐PB film modified electrode were evaluated and discussed.  相似文献   

2.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

3.
《Electroanalysis》2006,18(12):1153-1158
We demonstrate a facile fabrication method to make chemical gas sensors using single‐walled carbon nanotubes (SWNT) electrochemically functionalized with polyaniline (PANI). The potential advantage of this method is to enable targeted functionalization with different materials to allow for creation of high‐density individually addressable nanosensor arrays. PANI‐SWNT network based sensors were tested for on‐line monitoring of ammonia gas. The results show a superior sensitivity of 2.44% ΔR/R per ppmv NH3 (which is more than 60 times higher than intrinsic SWNT based sensors), a detection limit as low as 50 ppbv, and good reproducibility upon repeated exposure to 10 ppmv NH3. The typical response time of the sensors at room temperature is on the order of minutes and the recovery time is a few hours. Higher sensitivities were observed at lower temperatures. These results indicate that electrochemical functionalization of SWNTs provides a promising new method of creating highly advanced nanosensors with improved sensitivity, detection limit, and reproducibility.  相似文献   

4.
《Electroanalysis》2006,18(18):1842-1846
Nanosized Prussian blue (PB) particles were synthesized with a chemical reduction method and then the PB nanoparticles were assembled on the surface of multiwall carbon nanotubes modified glassy carbon electrode (PB/MWNTs/GCE). The results showed that the PB/MWNTs nanocomposite exhibits a remarkably improved catalytic activity towards the reduction of hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the PB/MWNTs platform by an electrochemically polymerized o‐phenylenediamine (OPD) film to construct an amperometric glucose biosensor. The biosensor exhibited a wide linear response up to 8 mM with a low detection limit of 12.7 μM (S/N=3). The Michaelis–Menten constant Km and the maximum current imax of the biosensor were 18.0 mM and 4.68 μA, respectively. The selectivity and stability of the biosensor were also investigated.  相似文献   

5.
Chemical functionalization of single‐walled carbon nanotubes (SWNTs) has constructed plenty of new structures with useful properties. But the modification was often confined to organic molecules, either by covalence or noncovalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: chromium hexacyanoferrate (Cr hcf). The resulting Cr hcf/SWNTs nanocomposites were confirmed by Field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Cr hcf crystallites are observed to be finely attached to the SWNTs. The electrochemical properties of Cr hcf/SWNTs nanocomposites were also investigated. The nanocomposites modified glassy carbon (GC) electrode shows high electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5 μM to 10 mM (R=0.9989). In addition, the sensor has good stability and reproducibility.  相似文献   

6.
An electrochemical DNA sensor was constructed using single‐walled carbon nanotubes (SWNTs) attached to a self‐assembled monolayer of 11‐amino‐1‐undecanethiol on a gold surface. The voltammetric peak of methylene blue (MB), which interacts with the DNA guanine bases specifically, was used to follow the DNA hybridization process. After DNA hybridization with its complementary DNA strand, the MB electrochemical signal response decreased and the change in MB signal response was used as the basis for the electrochemical sensing of DNA hybridization. The as described DNA sensor demonstrated to have good stability, selectivity, a linear response over the DNA concentration range from 100 to 1,000 nM and a limit of detection of 7.24 nM.  相似文献   

7.
《Analytical letters》2012,45(5):913-926
Abstract

A new nanocomposite was developed by combination of prussian blue (PB) nanoparticles and multiwalled carbon nanotubes (MWNTs) in the matrix of biopolymer chitosan (CHIT). The PB and MWNTs had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide. The CHIT/MWNTs/PB nanocomposite‐modified glassy carbon (GC) electrode could amplify the reduction current of hydrogen peroxide by ~35 times compared with that of CHIT/MWNTs/GC electrode and reduce the response time from ~60 s for CHIT/PB/GC to 3 s. Besides, the CHIT/MWNTs/PB nanocomposite‐modified GC electrode could reduce hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents such as ascorbic acid (AA) uric acid (UA) and acetaminophen (AC). With glucose oxidase (GOx) as an enzyme model, a new glucose biosensor was fabricated. The biosensor exhibited excellent sensitivity (the detection limit is down to 2.5 µM), fast response time (less than 5 s), wide linear range (from 4 µM to 2 mM), and good selection.  相似文献   

8.
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)6]3? and KCl. Fourier transform infrared spectroscopy, UV‐vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer‐by‐layer technique. The thus‐prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.  相似文献   

9.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

10.
A simple and sensitive method for the amperometric detection of trace amount of chromium(VI) using a Prussian blue modified glassy carbon electrode (PB/GCE) is described here. The Everitts salt/Prussian blue redox couple of the PB film was found to mediate the Cr(VI) reduction, and the mechanism of electrochemical reaction was investigated. The effects of PB film thickness, applied potential and electrolyte solution on the current response of Cr(VI) reduction were thoroughly studied. Under the optimized conditions, the PB/GCE provided a wide linear range for Cr(VI) analysis from 0.5 to 200 ppb with excellent sensitivity (15±0.2 nA/ppb) and low detection limit (0.15 ppb). In addition, the modified electrode showed excellent stability, reproducibility and good resistance to other metal ions and surfactants. Finally, the proposed method was applied to detect trace Cr(VI) in wastewater with satisfactory results. The great advantages of the method were characterized by the simplicity, ease of preparation, stability, short analysis time and cost‐efficiency.  相似文献   

11.
A novel reagentless amperometric immunosensor for the determination of alpha‐fetoprotein (AFP) was prepared by immobilizing TiO2 colloids on Prussian blue (PB) modified platinum electrode, which yielded a positively charged interface with strong adsorption to deposit gold nanoparticles for immobilization of alpha‐fetoprotein antibody (anti‐AFP). The factors influencing the performance of the proposed immunosensors were studied in detail. Under the optimized conditions, cyclic voltammograms determination of AFP showed a specific response in two concentration ranges from 3.0 to 30.0 ng/mL and from 30.0 to 300.0 ng/mL with a detection limit of 1.0 ng/mL at a signal‐to‐noise ratio of 3. The proposed immunosensor exhibited high selectivity, good reproducibility, long‐term stability (>2 months) and good repeatability.  相似文献   

12.
The electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA was described using a single‐walled carbon nanotube (SWCNT)/poly(vinylferrocenium) (PVF+) modified pencil graphite electrode (PGE). The electrochemical oxidation signals of guanine were monitored before and after the interaction between MC and DNA by using differential pulse voltammetry. The effects of DNA and MC concentration and MC interaction time were examined based on the electrode response. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of SWCNT/PVF+ modified and PVF+ modified PGEs. The detection limit corresponded to 625 ng/mL for MC using calf thymus double‐stranded DNA immobilized SWCNT/PVF+ modified PGE.  相似文献   

13.
以Nafion-多壁碳纳米管(MWNTs)薄膜修饰玻碳电极,采用恒电位法在其表面电沉积纳米Cu,研制了一种新型的芦丁电化学传感器。采用循环伏安法和电化学阻抗谱研究传感器在铁氰化钾-亚铁氰化钾体系中的电化学行为,以考察传感器的电化学性能,采用扫描电镜对传感器表面的形态进行了研究,并利用差分脉冲伏安法测定芦丁的含量。实验结果表明,该传感器对芦丁有较好的催化作用。在优化实验条件下,对芦丁检测的线性范围为1.0×10-8~1.0×10-6 mol/L,检出限为8.4×10-9 mol/L(S/N=3),回收率为98.1%~101%,该传感器制作简单,线性范围宽,灵敏度高,为槐米等样品中芦丁含量的检测提供了一种新的、行之有效的方法。  相似文献   

14.
A gold surface modified with a self‐assembled monolayer of 11‐amino‐1‐undecanethiol (AUT) was used for the covalent immobilization of oxidized single‐walled carbon nanotubes (SWNTs). The as‐described SWNTs‐modified substrate was subsequently used to attach single‐stranded deoxyribonucleic acid (ssDNA) used as a substrate for DNA hybridization. Electrochemical impedance spectroscopy measurements were performed to follow the DNA hybridization process by using the redox couple [Fe(CN)6]3−/4− as a marker ion. Specifically, changes in charge transfer resistance obtained from the Nyquist plots were used as the sensing parameter of DNA hybridization. The substrate sensitivity towards changes in target DNA concentration, its selectivity toward different DNA sequences and its reusability are successfully demonstrated in this report.  相似文献   

15.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

16.
17.
We described the synthesis of nickel octadecylphthalocyanine (NiPc(C10H21)8), followed by its adsorption on single‐walled carbon nanotubes (SWCNT) to form SWCNT‐NiPc(C10H21)8 conjugates. SWCNT‐NiPc(C10H21)8 was used to modify a glassy carbon electrode (GCE) and for the electrooxidation of 4‐chlorophenol and 2,4‐dichlorophenol. The SWCNT and NiPc(C10H21)8 have a synergistic effect on each other in terms of improving electrocatalysis for the detection of chlorophenols. The stability of the electrode improved in the presence of NiPc(C10H21)8 or NiPc compared to the bare GCE. The presence of SWCNT improves the electrocatalytic behaviour of NiPc(C10H21)8 but not of unsubstituted NiPc. All modified electrodes showed improved stability towards the detection of 2,4‐dichlorophenol. The best stability for 4‐CP detection was observed in the presence of SWCNT for NiPc(C10H21)8.  相似文献   

18.
A sonochemical method has been successfully used to synthesize MnO2/MWNTs nanocomposites. The structure and nature of the resulting MnO2/MWNTs composite were characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray diffraction (EDX), X‐ray photoelectron spectroscopy (XPS).The results show that the sonochemically synthesized MnO2 nanoparticles were homogeneously dispersed on the modified MWNT surfaces. The performance of the MnO2/MWNTs nanocomposites modified electrode was characterized using cyclic voltammetry (CV) and Nyquist plots. The electrode exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. This may be attributed to the small particle size, high dispersion of MnO2 particles. The fabricated hydrazine sensor showed a wide linear range of 5.0×10?7–1.0×10?3 M with a response time less than 5 s and a detection limit of 0.2 μM. Taking the advantage of the unique properties of both MWNTs and MnO2, it would greatly broaden the applications of MWNTs and MnO2.  相似文献   

19.
Different carbonaceous materials, such as single‐walled carbon nanotubes (SWCNTs) and glassy carbon submitted to an electrochemical activation at +1.80 V (vs. SCE) for 900 s, have been used with the aim of comparing their performances in the development of enzyme electrodes. Commercial SWCNTs have been pretreated with 2.2 M HNO3 for 20 h prior to use. The utility of activated GC as promising material for amperometric oxidase‐based biosensors has been confirmed. With glucose oxidase (GOx) as a model enzyme, glucose was efficiently detected up to 1 mM without the use of a mediator. Both electrodes operated in stirred solutions of 0.1 M phosphate buffer (pH 5.5), containing dissolved oxygen, at a potential of ?0.40 V vs. SCE. Although the performances of the two carbonaceous materials were comparable, the biosensors based on activated GC were characterized by a practically unchanged response 40 days after the fabrication, a better signal to noise ratio, and a little worse sensitivity. In addition, the preparation procedure of such biosensors was more simple, rapid and reproducible.  相似文献   

20.
《Electroanalysis》2005,17(1):89-96
Iron‐phthalocyanines (FePc) are functionalized at multi‐walled carbon nanotubes (MWNTs) to remarkably improve the sensitivity toward hydrogen peroxide. We constructed a highly sensitive and selective glucose sensor on FePc‐MWNTs electrode based on the immobilization of glucose oxidase (GOD) on poly‐o‐aminophenol (POAP)‐electropolymerized electrode surface. SEM images indicate that GOD enzymes trapped in POAP film tend to deposit primarily on the curved tips and evenly disperse along the sidewalls. The resulting GOD@POAP/FePc‐MWNTs biosensor exhibits excellent performance for glucose with a rapid response (less than 8 s), a wide linear range (up to 4.0×10?3 M), low detection limits (2.0×10?7 M with a signal‐to‐noise of 3), a highly reproducible response (RSD of 2.6%), and long‐term stability (120 days). Such characteristics may be attributed to the catalytic activity of FePc and carbon nanotube, permselectivity of POAP film, as well as the large surface area of carbon nanotube materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号