首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents an optimal control applied to water flow using the first and second order adjoint equations. The gradient of the performance function with respect to control variables is analytically obtained by the first order adjoint equation. It is not necessary to compute the Hessian matrix directly using the second order adjoint equation. Two numerical studies have been performed to show the adaptability of the present method. The performance of the second order adjoint method is compared with that of the weighted gradient method, Broyden–Fletcher–Goldfarb–Shanno method and Lanczos method. The precise forms of the adjoint equations and the gradient to use for the minimisation algorithm are derived. The computation by the Lanczos method is shown as superior to those of the other methods discussed in this paper. The message passing interface library is used for the communication of parallel computing.  相似文献   

2.
The purpose of this study is to obtain an optimal shape of a body located in an incompressible viscous flow. The optimal shape of the body is defined so as to minimize the fluid forces acting on it by determining the surface coordinates based on the finite element method and the optimal control theory. The performance function, which is used to judge the optimality of a shape, is defined as the square sum of the drag and lift forces. The minimization problem is solved using an adjoint equation method. The gradient in the adjoint equation is affected by the finite element configuration. The use of a finite element mesh whose shape is appropriate for the procedure is important in shape optimization. If the finite element mesh used is not suitable for computations, the exact gradient is not calculated. Therefore, a structured mesh is used for the adjacent area of the body and all finite element meshes are refined using the Delaunay triangulation at each iteration computation. The weighted gradient method is applied as the minimization technique. Using an algorithm in which all nodal coordinates on the surface of the body are employed and starting from a circle as an initial shape, a front‐edged and rear‐round shape is obtained because of the vortices at the back of the body. To overcome this difficulty, we introduced the partial control algorithm, in which some of the nodal coordinates on the surface of the body are updated. From four cases of computational studies, we reveal that the optimal shape has both sharp front and sharp rear edges. All computations are conducted at Reynolds number Re=250. The minimum value of the performance function is obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a computational method for water purification using second‐order adjoint equations. In Japan, the waters of polluted rivers are purified by conveying the waters from other rivers into the main rivers or by using outflows from sewage plants. The shallow water flow equation based on the water velocity and elevation and the advection diffusion equation of COD concentration are governing equations. The control problem involves finding a flow velocity into the main river that can reduce the COD concentration as close to the target value as possible. In other words, the problem is to find a water velocity to minimize the performance function, which is the square sum of the discrepancy between the computed and the observed COD concentrations. The present research was motivated by the need to apply water purification controls to practical projects. We have found that the controls occasionally tend to be unstable, and the stability of control must be ensured. By expanding the extended performance function into the Taylor series, the necessary condition for the stationary state is derived. Based on this condition, the first‐and second‐order adjoint equations can be obtained. The backward solution of the adjoint equation leads to the gradient and the Hessian product; these serve as the basis of the quasi‐Newton method. From the condition that the performance function must be minimum, the stability confirmation index can be determined. Using this index, we have derived the trust region method, the computation of which confirms the stability of control. Verification was carried out using a simple channel model. By varying the peak value of the inflow velocity, the outlet velocity has been determined such that the water elevation at the target point is zero. Depending on the peak value of the inflow, unstable control arises; this is determined by the stability confirmation index presented in this paper. The trust region method with the stability confirmation index is shown to be adaptable to judge the stability of control. The present method was applied to the water purification of Teganuma river in Japan. The steady fundamental state was computed with the inflow, outflow, and COD concentration at the inlet being specified. The control velocity at the control point can be determined for a fixed control duration with and without the stability confirmation index. The inflow, outflow, and COD concentration are specified as functions of time. It is shown that this method is suitable for practical use because control stability can be ensured. Moreover, it is also noted that the maximum flow velocity for stable control depending on the given control duration can be obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

In this paper, we present a shape optimisation method for wall structures due to the wave force induced by a solitary wave. The fluid is assumed to be incompressible. Introducing the adiabatic assumption in addition, the acoustic velocity method presented by the author's group, the SUPG finite element method, is effectively used. To evaluate the wave force, we use the performance functional, which consists of the sum of the square of the wave force integrated between the starting and final times. The coordinates of the wall structure are regulated to obtain the minimum performance functional. The adjoint equation method is utilised to derive the gradient of the performance functional with respect to the coordinates. The simple weighted gradient method is employed as the minimisation procedure. Two numerical studies show that the results are consistent with existing structures and provide useful information on the practical design of coastal structures.  相似文献   

5.
This paper presents an optimal control system that includes a time-delay function for application to flood control setups with a retardation area. This system consists of the present and past controls that express flow behaviour in the retardation area. Optimal control theory is used to obtain a control discharge that satisfies the state equation including the time-delay function and minimizes the performance function. The optimal control and the delayed control discharges are obtained by the solution of an adjoint equation. The weighted gradient method is employed as a minimization algorithm. The Galerkin finite element procedure is employed to discretize the state and adjoint equations in the spatial direction. The bubble function interpolation, originated by the authors' group, using a stabilized term, is employed for the discretization in space. The flood flow in the Tsurumi river is presented as a numerical model. We show in this paper that floods can be controlled by means of a time-delay function.  相似文献   

6.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopts time-averaged aerodynamic coefficients as objective functions is presented. The time-accurate continuous adjoint equation and its boundary conditions are derived. The flow field and the adjoint equation are simulated numerically by the finite volume method (FVM). Feasibility and accuracy of the approach are perfectly validated by the design optimization results of the plunging NACA0012 airfoil.  相似文献   

8.
The purpose of this paper is to determine the shape of an oscillating body by minimising drag and lift forces, located in a transient incompressible viscous fluid flow by means of the Arbitrary Lagrangian Eulerian finite element method and an optimal control theory. A performance function is expressed by the drag and lift forces. The performance function should be minimised satisfying the state equation and the constant volume condition. Therefore, this problem can be transformed into a minimisation problem without constraint by the Lagrange multiplier method. The adjoint equation and the gradient of the performance function are used to update the shape of the body. In this study, as a minimisation technique, the weighted gradient method is applied. The final shape is obtained of which drag and lift forces are reduced by 66.2% and 92.8%, respectively. The final shape obtained by this study is compared with the final shape of the non-oscillating body. The obtained final shape of the oscillating body is significantly different from the non-oscillating body.  相似文献   

9.
建立了非规则区域的有限分析5点格式,增加了有限分析法对不规则边界的适应性。应用所提出的方法对水利工程中常见的有压和无压流动进行了计算,与实验和前人的计算结果相比较,本文的方法都能得到较为满意的结果。本文的计算格式也可以应用到其他非规则区域的计算中。  相似文献   

10.
The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.  相似文献   

11.
IntroductionThoughatransport_diffusion (orLagrange_Galerkin)method ,whichisalsocalledachar_acteristicsmethod ,isanoldone[1]andhasbeenextensivelyappliedtodealingwithPDEswithdiffusiontermand/orconvection ,ithadnotbeenmixedthefiniteelementmethodstotreatsuccessfullytheconvergenceofnumericalsolutionfortheNavier_Stokesequationsuntiltheearly198 0s[2 ].Intheearly 1 990s,Berm挷dezetal.[3]appliedthismethodtodealingwiththeshallowwaterequationsonlyincludingthecurrentandthedepthofwaterandonlyderi…  相似文献   

12.
The present paper makes use of a wave equation formulation of the primitive shallow water equations to simulate one-dimensional free surface flow. A numerical formulation of the boundary element method is then developed to solve the wave continuity equation using a time-dependent fundamental solution, while an explicit finite difference scheme is used to derive velocities from the primitive momentum equation. One-dimensional free surface flows in open channels are treated and the results compared with analytical and numerical solutions. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Finite element solution of the shallow water wave equations has found increasing use by researchers and practitioners in the modelling of oceans and coastal areas. Wave equation models, most of which use equal-orderC0 interpolants for both the velocity and the surface elevation, do not introduce spurious oscillation modes, hence avoiding the need for artificial or numerical damping. An important question for both primitive equation and wave equation models is the interpretation of boundary conditions. Analysis of the characteristics of the governing equations shows that for most geophysical flows a single condition at each boundary is sufficient, yet there is not a consensus in the literature as to what that boundary condition must be or how it should be implemented in a finite element code. Traditionally (partly because of limited data), surface elevation is specified at open ocean boundaries while the normal flux is specified as zero at land boundaries. In most finite element wave equation models both of these boundary conditions are implemented as essential conditions. Our recent work focuses on alternative ways to numerically implement normal flow boundary conditions with an eye towards improving the mass-conserving properties of wave equation models. A unique finite element formulation using generalized functions demonstrates that boundary conditions should be implemented by treating normal fluxes as natural conditions with the flux interpreted as external to the computational domain. Results from extensive numerical experiments show that the scheme does conserve mass for all parameter values. Furthermore, convergence studies demonstrate that the algorithm is consistent, as residual errors at the boundary diminish as the grid is refined.  相似文献   

14.
Several numerical algorithms for solving inverse natural convection problems are revisited and studied. Our aim is to identify the unknown strength of a time‐varying heat source via a set of coupled nonlinear partial differential equations obtained by the so‐called finite element consistent splitting scheme (CSS) in order to get a good approximation of the unknown heat source from both the measured data and model results, by minimizing a functional that measures discrepancies between model and measured data. Viewed as an optimization problem, the solutions are obtained by means of the conjugate gradient method. A second‐order CSS in time involving the direct problem, the adjoint problem, the sensitivity problem and a system of sensitivity functions is used in order to enhance the numerical accuracy obtained for the unknown heat source function. A spatial discretization of all field equations is implemented using equal‐order and mixed finite element methods. Numerical experiments validate the proposed optimization algorithms that are in good agreement with the existing results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The complete discrete adjoint equations for an unstructured finite volume compressible Navier–Stokes solver are discussed with respect to the memory and time efficient evaluation of their residuals, and their solution. It is seen that application of existing iteration methods for the non‐linear equation—suitably adjointed—has a property of guaranteed convergence provided that the non‐linear iteration is well behaved. For situations where this is not the case, in particular for strongly separated flows, a stabilization technique based on the Recursive Projection Method is developed. This method additionally provides the dominant eigenmodes of the problem, allowing identification of flow regions that are unstable under the basic iteration. These are found to be regions of separated flow. Finally, an adjoint‐based optimization with 96 design variables is performed on a wing–body configuration. The initial flow has large regions of separation, which are significantly diminished in the optimized configuration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A new type of Galerkin finite element for first-order initial-value problems(IVPs) is proposed. Both the trial and test functions employ the same m-degreed polynomials. The adjoint equation is used to eliminate one degree of freedom(DOF) from the test function, and then the so-called condensed test function and its consequent condensed Galerkin element are constructed. It is mathematically proved and numerically verified that the condensed element produces the super-convergent nodal solutions of...  相似文献   

17.
The purpose of this article is to present a technique to optimally control river flood using a drainage basin considering a moving boundary. The main theme of this article is to obtain outflow discharge from the drainage basin that maintains the water level at a downstream point and empties the drainage basin as soon as possible. The water flow phenomenon inside the drainage basin when a river flood occurs is considered. This phenomenon can be analysed by the finite element method considering a moving boundary. The optimal control theory can be implemented to obtain the optimal control discharge. The finite element analysis with a moving boundary is introduced in the optimal control theory. A new boundary condition on the downstream side of the river is proposed. This condition is formulated by the solitary wave condition based on the basic water level being capable of representing natural water surface. As a numerical study, optimal control of shallow water flow is carried out for the Tsurumi River and its drainage basin model.  相似文献   

18.
热传导问题灵敏度分析的伴随法   总被引:5,自引:1,他引:5  
在热传导灵敏度分析的直接法的研究基础上,进一步探讨了稳态和瞬态热传导问题灵敏度分析的伴随法.推导了伴随法的计算列式,对于瞬态热传导问题,研究了瞬态约束处理的关键点方法,并提出伴随方程的精细积分解法。算例表明,稳态问题灵敏度计算,伴随法与直接法的结果是一致的;瞬态问题灵敏度计算,两种方法的精度相当。  相似文献   

19.
This paper formulates a finite volume analogue of a finite element schematization of three‐dimensional shallow water equations. The resulting finite volume schematization, when applied to the continuity equation, exactly reproduces the set of matrix equations that is obtained by the application of the corresponding finite element schematization to the continuity equation. The procedure allows the consistent and mass conserving coupling of the finite element Telemac model for three‐dimensional flow with the finite volume Delft3D‐WAQ model for water quality. The work has been carried out as part of a joint development by LNHE and WL∣Delft Hydraulics to explore the mutual interaction of their software. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the use of the continuous adjoint equation for aerodynamic shape optimization of complex configurations with overset grids methods. While the use of overset grid eases the grid generation process, the non‐trivial task of ensuring communication between overlapping grids needs careful attention. This need is effectively addressed by using a practically useful technique known as the implicit hole cutting (IHC) method. The method depends on a simple cell selection process based on the criterion of cell size, and all grid points including interior points and fringe points are treated indiscriminately in the computation of the flow field. This paper demonstrates the simplicity of the IHC method for the adjoint equation. Similar to the flow solver, the adjoint equations are solved on conventional point‐matched and overlapped grids within a multi‐block framework. Parallel computing with message passing interface is also used to improve the overall efficiency of the optimization process. The method is successfully demonstrated in several two‐ and a three‐dimensional shape optimization cases for both external and internal flow problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号