首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A boundary layer analysis is used to investigate the effect of lateral mass flux on mixed convection heat and mass transfer over inclined permeable surfaces in porous media. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations and then the resulting equations is solved by numerical method. The numerical results for heat and mass transfer in terms of Nusselt and Sherwood number are presented in x-y plots for the buoyancy ratio (N) and Lewis number (Le) with mass flux pammeter (Fw). The obtained results are validated against previously published results with on special case of the problem.  相似文献   

2.
The Navier–Stokes equations, which are the governing equations for a steady, viscous, incompressible fluid rotating about the z-axis with angular velocity ω, are linearized using the Oseen approximation. Two parameters, namely the Reynolds number Re = Ua/v and Reω = 2ωa2/v (the Reynolds number w.r.t. rotation), enter the linearized equations. These equations are solved by the Peaceman–Rachford ADI method and the resulting algebraic equations are solved by the SOR method. Streamlines are plotted and compared with the Oseen solution for the non-rotating case. The magnitude of the vorticity vector with increasing θ is also plotted.  相似文献   

3.
The available sources and procedures for determination of AGMA geometry factor J are tables, charts and semi-analytical methods. When computerized gear design is considered, usage of tables requires a number of interpolations; usage of charts requires curve fitting; and usage of semi-analytical methods needs a numerical algorithm and may have convergence problems. As an alternative to these, polynomial equations for direct calculation of AGMA geometry factor J are derived for external spur gears. Thus, it is made possible to evaluate the J factor easily and with minimum process time. J factors are determined being independent of the highest point of single tooth contact (HPSTC). Derived equations can be used to calculate the tooth root stresses corresponding to loads acting on any point on the involute tooth profile. Thus, cases where the center distance is increased for providing backlash or for operating the gears at a desired exact center distance can easily be handled by determining the corresponding new HPSTC. A computer program is developed to demonstrate the usage of the derived equations. The method can also be used for determination of the J factors for gears with non-standard proportions.  相似文献   

4.
The flow of steady incompressible viscous fluid rotating about the z-axis with angular velocity ω and moving with velocity u past a sphere of radius a which is kept fixed at the origin is investigated by means of a numerical method for small values of the Reynolds number Reω. The Navier–Stokes equations governing the axisymmetric flow can be written as three coupled non-linear partial differential equations for the streamfunction, vorticity and rotational velocity component. Central differences are applied to the partial differential equations for solution by the Peaceman–Rachford ADI method, and the resulting algebraic equations are solved by the ‘method of sweeps’. The results obtained by solving the non-linear partial differential equations are compared with the results obtained by linearizing the equations for very small values of Reω. Streamlines are plotted for Ψ = 0·05, 0·2, 0·5 for both linear and non-linear cases. The magnitude of the vorticity vector near the body, i.e. at z = 0·2, is plotted for Reω = 0·05, 0·24, 0·5. The correction to the Stokes drag as a result of rotation of the fluid is calculated.  相似文献   

5.
The unsteady forces on a square cylinder in sinusoidally oscillating flows with non‐zero‐mean velocities are investigated numerically by using a weakly compressible‐flow method with three‐dimensional large eddy simulations. The major parameters in the analysis are Keulegan–Carpenter number (KC) and the ratio between the amplitude and the mean velocities of the approaching flow (AR). By varying the values of KC and AR the resulting drag and lift of the cylinders are analyzed systematically at two selected approaching‐flow attack angles (0 and 22.5°). In the case of the non‐zero attack angle, results show that both the drag and lift histories can be adequately described by Morison equations. However, Morison equations fail to correctly describing the lift history as the attack angle is zero. In addition, when the ratio of AR/KC is near the Strouhal number of the bluff‐body flow, the resulting drag is promoted due to the occurrence of resonance. Based on the results of systematic analyses, finally, the mean and inertia force coefficients at the two selected attack angles are presented as functions of KC and AR based on the Morison relationships. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The present analysis discusses the peristaltic flow of a nanofluid in a diverging tube. This is the first article on the peristaltic flow in nanofluids. The governing equations for nanofluid are modelled in cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Temperature and nanoparticle equations are coupled so Homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been calculated for velocity profile and pressure gradient. The solution depends on Brownian motion number N b , thermophoresis number N t , local temperature Grashof number B r and local nanoparticle Grashof number G r . The effects of various emerging parameters are investigated for five different peristaltic waves. It is observed that the pressure rise decreases with the increase in thermophoresis number N t . Increase in the Brownian motion parameter N b and the thermophoresis parameter N t temperature profile increases. Streamlines have been plotted at the end of the article.  相似文献   

7.
The theoretical analysis and the numerical computations for the problem of a thin plate with large deflection and some holes become much more difficult due to the multi-valued properties of the stress functionF and the single-valued demands on the displacements. The necessary and sufficient conditions which can assureF to be single-valued are obtained in this paper. At the same time, we prove that the single-valued demands on the displacements are equivalent to 3m functional constraint equationsDC(w,F)=0, wherem is the number of holes. From these conclusions, the single-valued governing-equations of the problem of plates with large deflection and some holes are derived. It is a system of fourth order partial differential equations with 3m unknown constants and constrained equations. A numerical method for solving this problem is presented. The problem of the critical load is considered and an iterative scheme for computing the buckled states is given when a critical load λ is ‘single’.  相似文献   

8.
In this paper, the effects of Prandtl number on the steady magneto-convection around a centrally located adiabatic body inside a square enclosure are numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines and isotherms when the Rayleigh number varies between 103 and 106, the Hartmann number changes between 0 and 100 and the Prandtl number ranges between 0.005 and 0.1. The ratio of the buoyancy force to the Lorentz force (Ra/Ha 2) is introduced as an index to compare the contribution of natural convection and magnetic field strength on heat transfer. The results obtained from numerical modeling show that the Prandtl number has not considerable effect on heat transfer at low Rayleigh numbers. The effect of magnetic field strength on convection is increased by increasing Prandtl number. The effect of Prandtl number on the average Nusselt number in the presence of a magnetic field is less than the case without a magnetic field.  相似文献   

9.
 In this paper, the problem of laminar free convection from a vertical permeable circular cone maintained with non-uniform surface heat flux is considered. The governing boundary layer equations are reduced non-similar boundary layer equations with surface heat flux proportional to x n (where x is the distance measured from the leading edge). The solutions of the reduced equations are obtained by using three distinct solution methodologies; namely, (i) perturbation solution for small transpiration parameter, ξ, (ii) asymptotic solution for large ξ, and (iii) the finite difference solutions for all ξ. The solutions are presented in terms of local skin-friction and local Nusselt number for smaller values of Prandtl number and heat flux gradient and are displayed in tabular form as well as graphically. Effects of pertinent parameters on velocity and temperature profiles are also shown graphically. Solutions obtained by finite difference method are also compared with the perturbation solutions for small and large ξ and found to be in excellent agreement. Received on 1 October 1999  相似文献   

10.
A direct numerical scheme is developed to study the temporal amplification of a 2D disturbance in plane Poiseuille flow. The transient non-linear Navier–Stokes equations are applied in a region of wavelength moving with the wave propagation speed. The complex amplitude involved in the perturbation functions is considered as the initial input of the non-linear stability equations. In this study a fully implicit finite difference scheme with five points in the flow direction and three points in the normal direction is developed so that numerical simulation of the amplification of a two-dimensional temporal disturbance in plane Poiseuille flow can be investigated. The growth and decay of the disturbance with time are presented and neutral stability curves which are in good agreement with existing solutions can be determined. The critical conditions as a function of the amplitude A0 of the disturbance are presented. Fixing the wavelength, the Navier–Stokes equations are solved up to Re=10,000 a friction factor increasing with Reynolds number is observed. The 2D non-linear behaviour of the streamfunction, vorticity and velocity components at Re=10,000 are also exhibited. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents results on the combined effect of thermo‐solutal buoyancy forces on the recirculatory flow behavior in a horizontal channel with backward‐facing step and the ensuing impact on heat and mass transfer phenomena. The governing equations for double diffusive mixed convection are represented in velocity–vorticity form of momentum equations, velocity Poisson equations, energy and concentration equations. Galerkin's finite‐element method has been employed to solve the governing equations. Recirculatory flow fields with heat and mass transfer are simulated for opposing and aiding thermo‐solutal buoyancy forces by assuming suitable boundary conditions for energy and concentration equations. The effect of Richardson number (0.1?Ri?10) and buoyancy ratio (?10?N?10) on the recirculation bubble and Nusselt and Sherwood numbers are studied in detail. For Richardson number greater than unity, distinct variations in the gradients of Nusselt number and Sherwood number with buoyancy ratio are observed for flow regimes with opposing and aiding buoyancy forces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Pressure drop and cut size measurements are reported for a full scale cyclone operating within a 58 MWth CFB-combustor unit at 775 ℃.
The paper reviews the vast number of equations to calculate the pressure drop and separation efficiency of cyclones, generally for operation at ambient temperature and at low Cs [〈0.5]. None of the literature correlations predicts the pressure drop with a fair accuracy within the range of experimental operating conditions. The cut size d50 can be estimated using direct empirical methods or using the Stokes number, Stk50. Both methods were used to compare measured and predicted values of d50. With the exception of Muschelknautz and Krambrock, none of the equations made accurate predictions.
Finally, an alternative method to determine the friction factor of the pressure drop equation (Euler number, Eu) and of the cut size is proposed. The Eu number is determined from the geometry of common cyclones, and the derived value of Stk50 defines more accurate cut sizes. The remaining discrepancy of less than 5%, when compared with the measured values, is tentatively explained in terms of a reduced cyclone diameter due to the solids layer formed near its wall. Further measurements, mostly using positron emission particle tracking, elucidate the particle motion in the cyclone and both tracking results and the influence of the particle movement on Eu and Stk50 will be discussed in a follow-up paper.  相似文献   

13.
In this study surface-averaged and extremal properties of heat transfer and shear stress on the upper wall surface of Rayleigh–Bénard convection are numerically examined. The Prandtl number was raised up to 103, and the Rayleigh number was changed between 104 and 107. As a result, average Nusselt number Nu and shear rate τ/Pr depends on Pr, Ra, and the entire numerical results are distributed between two correlation equations corresponding to small and large Pr. The small and large Pr equations are closely related to steady and unsteady flow regimes, respectively. Nevertheless, a single relation τ/Pr ~ Nu 3.0 exists to explain the entire results. Similarly the change of local maximal properties Nu max and τ max/Pr depends on Pr, Ra, and these values are also distributed between two correlation equations corresponding to small and large Pr cases. Despite such complicated dependence we can obtain a correlation equation as a form of τ max/Pr ~ Nu max2.6, which has not been obtained theoretically.  相似文献   

14.
Conjugate natural convection-conduction heat transfer in a square porous enclosure with a finite-wall thickness is studied numerically in this article. The bottom wall is heated and the upper wall is cooled while the verticals walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and the COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (100 ≤ Ra ≤ 1000), the wall to porous thermal conductivity ratio (0.44 ≤ K r ≤ 9.90) and the ratio of wall thickness to its height (0.02 ≤ D ≤ 0.4). The results are presented to show the effect of these parameters on the heat transfer and fluid flow characteristics. It is found that the number of contrarotative cells and the strength circulation of each cell can be controlled by the thickness of the bottom wall, the thermal conductivity ratio and the Rayleigh number. It is also observed that increasing either the Rayleigh number or the thermal conductivity ratio or both, and decreasing the thickness of the bounded wall can increase the average Nusselt number for the porous enclosure.  相似文献   

15.
This paper is concerned with producing highly accurate solution and bifurcation structure using the pseudo‐spectral method for the two‐dimensional pressure‐driven flow through a horizontal duct of a square cross‐section that is heated by a uniform flux in the axial direction with a uniform temperature on the periphery. Two approaches are presented. In one approach, the streamwise vorticity, streamwise momentum and energy equations are solved for the stream function, axial velocity, and temperature. In the second approach, the streamwise vorticity and a combination of the energy and momentum equations are solved for stream function and temperature only. While the second approach solves less number of equations than the first approach, a grid sensitivity analysis has shown no distinct advantage of one method over the other. The overall solution structure composed of two symmetric and four asymmetric branches in the range of Grashof number (Gr) of 0–2 × 106 for a Prandtl number (Pr) of 0.73 has been computed using the first approach. The computed structure is comparable to that found by Nandakumar and Weinitschke (1991) using a finite difference scheme for Grashof numbers in the range of 0–1×106. The stability properties of some solution branches; however, are different. In particular, the two‐cell structure of the isolated symmetric branch that has been found to be unstable by the study of Nandakumar and Weinitschke is found to be stable by the current study. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Forced convection heat transfer characteristics around a microsphere subjected to uniform heat flux boundary condition is numerically investigated in this study. Moderate to high values of Reynolds number and a wide range of Prandtl number are considered. The analysis assumes that the continuity assumption is valid and hence the Navier–Stokes equations are solved for the range of Knudsen number of 0.001 ≤ Kn ≤ 0.1. The appropriate boundary conditions at the surface of the microsphere; the velocity slip and temperature jump are applied. The effect of the flow parameters: Re, Pr and Kn on the velocity and temperature distribution is presented and hence a better control on the boundary layer thickness can be achieved in the microscale level. Furthermore, the effect of the controlling parameters on the delay of flow separation, reduced shear stress, drag coefficient and on the Nusselt number profiles is also presented in the results.  相似文献   

17.
A finite-difference analysis for the transient free convection flow of an incompressible viscous fluid past a vertical cone with variable wall surface temperature T w (x) = T + a x n varying as power function of distance from the apex (x = 0) is presented here. The dimensionless governing equations of the flow that are unsteady, coupled and non-linear partial differential equations are solved by an efficient, accurate and unconditionally stable finite difference scheme of Crank-Nicolson type. The velocity and temperature fields have been studied for various parameters such as Prandtl number and n (exponent in power law variation in surface temperature). The local as well as average skin-friction and Nusselt number are also presented and analyzed graphically. The present results are compared with available results in literature and are found to be in good agreement.  相似文献   

18.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

19.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF). The parabolic equations obtained from FVF are numerically integrated with the help of a straightforward finite difference method. Moreover, the nonsimilar system of equations obtained from SFF is solved by using a local nonsimilarity method, for the whole range of the local transpiration parameter ζ. Consideration is also given to the regions where the local transpiration parameter ζ is small or large enough. However, in these particular regions, solutions are acquired with the aid of a regular perturbation method. The effects of the magnetic field M and the Hall parameter m on the local skin friction coefficient and the local Nusselt number coefficient are graphically shown for smaller values of the Prandtl number Pr (= 0.005, 0.01, 0.05). Furthermore, the velocity and temperature profiles are also drawn from various values of the local transpiration parameter ζ.  相似文献   

20.
DNA molecules in the familiar Watson–Crick double helical B form can be treated as though they have rod-like structures obtained by stacking dominoes one on top of another with each rotated by approximately one-tenth of a full turn with respect to its immediate predecessor in the stack. These “dominoes” are called base pairs. A recently developed theory of sequence-dependent DNA elasticity (Coleman, Olson, & Swigon, J. Chem. Phys. 118:7127–7140, 2003) takes into account the observation that the step from one base pair to the next can be one of several distinct types, each having its own mechanical properties that depend on the nucleotide composition of the step. In the present paper, which is based on that theory, emphasis is placed on the fact that, as each base in a base pair is attached to the sugar-phosphate backbone chain of one of the two DNA strands that have come together to form the Watson–Crick structure, and each phosphate group in a backbone chain bears one electronic charge, two such charges are associated with each base pair, which implies that each base pair is subject to not only the elastic forces and moments exerted on it by its neighboring base pairs but also to long range electrostatic forces that, because they are only partially screened out by positively charged counter ions, can render the molecule’s equilibrium configurations sensitive to changes in the concentration c of salt in the medium. When these electrostatic forces are taken into account, the equations of mechanical equilibrium for a DNA molecule with N + 1 base pairs are a system of μN non-linear equations, where μ, the number of kinematical variables describing the relative displacement and orientation of adjacent pairs is in general 6; it reduces to 3 when base-pair steps are assumed to be inextensible and non-shearable. As a consequence of the long-range electrostatic interactions of base pairs, the μN × μN Jacobian matrix of the equations of equilibrium is full. An efficient numerically stable computational scheme is here presented for solving those equations and determining the mechanical stability of the calculated equilibrium configurations. That scheme is employed to compute and analyze bifurcation diagrams in which c is the bifurcation parameter and to show that, for an intrinsically curved molecule, small changes in c can have a strong effect on stable equilibrium configurations. Cases are presented in which several stable configurations occur at a single value of c.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号