首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper 1‐(2‐pyridylazo)‐2‐naphthol (PAN) and ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) were mixed with graphite powder to get a modified carbon paste electrode (PAN‐IL‐CPE), which was further used for the sensitive determination of bismuth(III). By the co‐contribution of the formation of PAN‐Bi complex and the accumulation effect of IL, more bismuth(III) was electrodeposited on the surface of the PAN‐IL‐CPE. Then the reduced Bi was oxidized and detected by differential pulse anodic stripping voltammetry (DPASV) with the oxidation peak appeared at 0.17 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the bismuth(III) concentration in the range from 0.04 to 7.5 μmol L?1 with the detection limit as 3.9 nmol L?1. The proposed method was successfully applied to the stomach medicine sample detection with good recovery.  相似文献   

2.
《Analytical letters》2012,45(7):1267-1278
Abstract

In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE. Well-defined sharp stripping peaks were observed in the determination of Pb(II) and Cd(II) simultaneously on this electrode. Under optimized conditions, the lowest detectable concentrations were 50 ng/l for Pb(II) and 80 ng/l for Cd(II) under a 10 min preconcentration. The attractive performances of MWNT-Nafion-bismuth modified GCE demonstrated its application for a simple, rapid, and harmless determination of trace heavy metals.  相似文献   

3.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

4.
杨春海 《应用化学》2003,20(6):597-0
漆酚铝树脂;漆酚铝高分子修饰碳糊电极用于溶出伏安法测定痕量银  相似文献   

5.
《Electroanalysis》2005,17(20):1835-1840
An L ‐cysteine modified gold electrode for the determination of copper in the presence of various amounts of arsenic with anodic stripping voltammetry has been studied. The electrode was fabricated by immersing a gold electrode in an ethanol solution of 5mM L ‐cysteine for 60 min. Various parameters, such as the effect of different supporting electrolytes, the pH of the electrolyte and the deposition potential were investigated. Under optimum conditions, copper was accumulated at ?0.3 V (vs. SEC) for 60 s in 0.1 M phosphate buffer pH 5.0 in the presence of different amounts of arsenic. Essentially the same sensitivities (0.33±0.001 μA/μM) and limits of detection (0.13±0.002 μM) of copper were obtained with various amount of arsenic in the range 2 μM to 20 μM.  相似文献   

6.
Traces of copper(II) can be determined by adsorptive stripping voltammetry using 2‐carboxy‐2′‐hydroxy‐5′‐sulfoformazyl benzene (Zincon) as complex forming reagent. First in phosphate buffer pH 6.4, copper(II)‐Zincon complex was adsorbed on carbon paste electrode (CPE) with an accumulation potential of 0.6 V. Following this, adsorbed complex was oxidized and detected by differential pulse voltammetric (DPV) scan from 0.6 to 1.0 V. The effective parameters in sensor response were examined. The detection limit (DL) of copper(II) was 1.1 μg/L and relative standard deviations (RSDs) for 10 and 200 μg/L Cu(II) were 1.81 and 1.03%, respectively. The calibration curve was linear for 2–220 μg/L copper(II). The resulting CPE does not use mercury and therefore, has a positive environmental benefit. The method, which is reasonably sensitive and selective, has been successfully applied to the determination of trace amount of copper in water and human hair samples.  相似文献   

7.
聚1,8-萘二胺修饰玻碳电极溶出伏安法测定银的研究   总被引:2,自引:0,他引:2  
采用电化学聚合的方法制备了聚1,8-萘二胺修饰玻碳电极,建立了开路富集-阳极溶出测定痕量Ag~+的方法.优化了各种实验参数(如富集底液的pH,富集时间等),并考察了其它离子的干扰影响.在最佳实验条件下,银在0.0008~0.1 mg·L~(-1)浓度范围内与溶出峰电流成良好的线性关系,检出限为0.0005 mg·L~(-1).该法用于实际水样中痕量银的测定,效果良好.  相似文献   

8.
A chemically modified electrode (CME) containing salicylaldehyde thiosemicarbazone (TSCsal) was evaluated for the ability to preconcentrate copper(II) prior to quantification by voltammetry. The CME has been used for the very sensitive and selective analysis of trace amounts of copper(II). A detection limit of 0.1 ppb was obtained by applying anodic stripping voltammetry with a flow system. The parameters that affect the sensitivity and possible interference by other ions or chelating agents have been examined in detail. The CME exhibits high stability and the response could be reproduced for four preconcentration-determination-renewal cycles [10ppbCu(II)] with a 2.87% relative standard deviation. The proposed method has been applied to the determination of copper(II) in tap water, drinking water, and NASS-3 standard reference sea water samples. The results gave satisfactory recoveries.  相似文献   

9.
In this study, a polyviologen modified glassy carbon electrode (PVGCE) was used to detect Hg(II) in aqueous solutions containing significant amounts of chloride anions in order to demonstrate the electroanalytical application of the electropolymerized polyviologen. The polyviologen thin film was formed on the electrode surface by applying a constant potential of ?1.0 V in the pH 4.2 Britton–Robinson (BR) buffer solution that contains 0.1 wt% of viologen oligomers. The PVGCE was found capability to improve the detection limit of Hg(II) in the solutions with high concentration of chloride because Hg(II) forms negative complex ions HgCl that can be accumulated to PVGCE by the anion‐exchange characteristic of polyviologen. With 5 minutes accumulation at ?0.2 V, the adsorbed HgCl anions were reduced to Hg and deposited on the electrode surface, and were determined with the following anodic stripping differential pulse voltammetry (ASDPV). The dependence of anodic stripping current versus concentration was linear from 1 ppb (5 nM) to 100 ppb (0.5 μM) with a regression coefficient of 0.9959.  相似文献   

10.
制备了三氮烯修饰碳糊电极(m-NPPAPT/CPE),并研究了Sn(Ⅱ)在该电极上的吸附伏安行为,建立了一种测定痕量锡(Ⅱ)的新方法。采用二阶导数线性扫描溶出伏安法进行分析。结果表明:在1mL 0.5mol/L HCl溶液中,于-1200mV处搅拌富集一定时间,在-1200~-200mV范围内以150mV/s的扫描速度线性扫描,Sn(Ⅱ)吸附在修饰电极表面,于约-476mV(vs SCE)处产生一个灵敏的阳极溶出峰,峰电流比未修饰电极增大约11倍。其峰电流与Sn(Ⅱ)浓度在4.0×10-10~1.0×10-8 mol/L和1.0×10-8~4.0×10-6 mol/L范围内分两段呈良好线性关系,其线性回归方程分别为ip(μA)=1.646C(μmol/L)+2.9566和ip(μA)=52.804C(μmol/L)-0.6402,相关系数分别为0.9973和0.9967;检出限(S/N=3)为2.7×10-10 mol/L(富集时间120s)。本方法操作简便、灵敏度高,应用于罐头食品中锡含量的测定,结果满意。  相似文献   

11.
《Electroanalysis》2018,30(9):2004-2010
The performance of screen‐printed electrodes modified in situ with tellurium film for the anodic stripping voltammetric (ASV) determination of Cu(II) is reported. It was found that two types of screen‐printed substrates, namely carbon and mesoporous carbon, were optimal for this application. The selected in situ tellurium film modified electrodes were applied for the square wave ASV determination of copper at μg L−1 concentration levels. Well‐defined and reproducible Cu oxidation stripping peaks were produced at a potential more negative than the anodic dissolution of tellurium. The highest sensitivity of Cu determination was achieved in 0.05 M HCl containing 50 μg L−1 Te(IV) after 300 s of accumulation at −0.5 V. Using the optimized procedure, a linear range from 2 to 35 μg L−1 of Cu(II) was obtained with a detection limit of 0.5 μg L−1 Cu(II) (S/N=3) for 300 s of deposition time. Both sensors, carbon TeF‐SPE and mesoporous carbon TeF‐SPE, were successfully applied for the quantification of Cu in a certified reference surface water sample.  相似文献   

12.
《Analytical letters》2012,45(6):881-897
Abstract

The preparation and electrochemical characterization of a carbon composite electrode modified with copper(II)-resin as well as its behavior toward rutin were investigated using cyclic and linear sweep voltammetry. The best voltammetric response was observed for a composite composition of 20% (m/m) copper(II)-resin, 0.10 mol L?1 KNO3/10?6 mol L?1 HNO3 solution (pH 6.0) as the supporting electrolyte, and a scan rate of 50 mVs?1. A linear voltammetric response for rutin was obtained in the concentration range from 9.90 × 10?7 to 8.07 × 10?6 mol L?1, with a detection limit of 2.65 × 10?8 mol L?1. The proposed electrode was useful for the quality control and routine analysis of rutin in pharmaceutical formulations.  相似文献   

13.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

14.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

15.
Mercury is a highly toxic metal, of which even small doses (<200 ng mL−1) can cause serious problems for humans, plants, animals and microorganisms, including marine species and freshwater organisms. Hence, a simple, fast, highly selective and sensitive and accurate method for the detection of mercury in the environmental, clinical or biological samples is necessary. A new, sensitive and selective method for the determination of Hg(II) with 5 % N1-hydroxy-N1,N2-diphenylbenzamidine modified carbon paste electrode has been developed. Hg(II) was accumulated for 210 s on the surface of the modified electrode using 0.1 M CH3COONa of pH 7 at −0.8 V vs Ag/AgCl, followed by electrochemical stripping with SWASV in 0.1 M NH4Cl at pH 4. The linear range is 0.02–10 μM Hg(II) with limit of detection of 1.28 nM. The method has RSDs of 3.7 %. The method was applied for the determination Hg(II) in five types of water samples. The recoveries were in the range 97.8–103 %. The proposed method was found to be highly selective and sensitive and has many attractive features compared to previous reports such as low cost, simplicity of electrode preparation, long term stability, fast response, easy renewable ability, and reasonable short accumulation time.  相似文献   

16.
Antimony(V) determination at an unmodified edge plane pyrolytic graphite (EPPG) electrode using anodic stripping voltammetry (ASV) by depositing beyond the hydrogen wave is shown in this paper. By depositing beyond the hydrogen wave, we report a sensitive method to determine pentavalent antimony at a carbon electrode in 0.25 M HCl. Using differential pulse anodic stripping voltammetry (DPASV), a bare EPPG electrode gave a detection limit of 5.8±0.02 nM without the need for surface modification. This level is greatly within the EU limit for drinking water of 40 nM.  相似文献   

17.
A differential pulse anodic stripping voltammetric procedure was developed for the determination of trace amounts of iron(II) in the presence of iron(III) at a carbon paste electrode (CPE) modified with dithiodianiline and gold nanoparticle. At the pH working of 3.0, a wide concentration range from 0.1 nM to 100 nM was observed with the detection limit of 0.05 nM. The relative standard deviation for a solution containing 50 nM of iron(II) was found to be 3.11 % (n=9). Possible interferences from the coexisting ions were also investigated. The validity of the method and applicability of the sensor were successfully tested by determining of iron(II) in lentil, wheat seed and barley seed samples.  相似文献   

18.
The simple, fast and highly sensitive anodic stripping voltammetric detection of As(III) at a gold (Au) nanoparticle‐modified glassy carbon (GC) (nano‐Au/GC) electrode in HCl solution was extensively studied. The Au nanoparticles were electrodeposited onto GC electrode using chronocoulometric technique via a potential step from 1.1 to 0 V vs. Ag|AgCl|NaCl (sat.) in 0.5 M H2SO4 containing Na[AuCl4] in the presence of KI, KBr, Na2S and cysteine additives. Surfaces of the resulting nano‐Au/GC electrodes were characterized with cyclic voltammetry. The performances of the nano‐Au/GC electrodes, which were prepared using different concentrations of Na[AuCl4] (0.05–0.5 mM) and KI additive (0.01–1.0 mM) at various deposition times (10–30 s), for the voltammetric detection of As(III) were examined. After the optimization, a high sensitivity of 0.32 mA cm?2 μM?1 and detection limit of 0.024 μM (1.8 ppb) were obtained using linear sweep voltammetry.  相似文献   

19.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

20.
《Electroanalysis》2006,18(8):773-778
A sensitive and selective method for the determination of Pb(II) with a zirconium phosphated silica gel (SiZrPH) modified carbon paste electrode has been developed. The measurements were carried out in three steps including an open circuit accumulation following by electrolysis of accumulated Pb(II) at the modified carbon paste electrode and differential pulse voltammetric determination. The analytical performance was evaluated with respect to the carbon paste composition, pH of solution at the accumulation step, pH and concentration of supporting electrolyte, electrolysis potential, accumulation time and electrolysis time. Two linear calibration graphs were obtained in the concentration ranges 2.5×10?9 mol L?1–5.0×10?8 mol L?1 and 5.0×10?8 mol L?1–5.0×10?6 mol L?1 with an accumulation time of 120 s. The detection limit was found to be 3.5×10?10 mol L?1. The effects of potential interfering ions were studied, and it was found that the proposed procedure is free from interferences of common interfering ions such as tin, thallium and etc. The developed method was applied to Pb(II) determination in a wastewater sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号