首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In our previous paper (Analyst, 2014 , 139, 5339) we introduced the concept of the back‐to‐back electrochemical design where the commonly overlooked back of screen‐printed electrodes are utilised to provide electroanalytical enhancements in screen‐printed electroanalytical sensors. In this configuration the overall sensor comprises of a flexible polyester substrate which has a total of two working, counter and reference electrodes present on the sensor, with a set of electrodes on each side of the substrate. The sensors are designed to allow for a commonly shared electrical connection to the potentiostat and do not require any specialised connections. In this paper we demonstrate proof‐of‐concept extending the electroanalytical utility of the back‐to‐back screen‐printed electrode sensors to bulk modified single‐walled carbon‐nanotubes and electrocatalytic cobalt phthalocyanine microband electrodes. The electroanalytical applications of these novel electrode configuration are exemplified towards the sensing of dopamine, capsaicin and hydrazine. This paper demonstrates the versatility of the back‐to‐back configuration where different surface modifications can be readily employed giving rise to enhancements in sensor performance.  相似文献   

2.
《Electrophoresis》2018,39(16):2131-2135
An electrochemical sensor for the detection of glucose using thread‐based electrodes and fabric is described. This device is relatively simple to fabricate and can be used for multiple readings after washing with ethanol. The fabrication of the chip consisted of two steps. First, three thread‐based electrodes (reference, working, and counter) were fabricated by painting pieces of nylon thread with either layered silver ink and carbon ink or silver/silver chloride ink. The threads were then woven into a fabric chip with a beeswax barrier molded around the edges in order to prevent leaks from the tested solutions. A thread‐based working electrode consisting of one layer of silver underneath two layers of carbon was selected to fabricate the final sensor system. Using the chip, a PBS solution containing glucose oxidase (GOx) (10 mg/mL), potassium ferricyanide (K3[Fe(CN)6]) (10 mg/mL) as mediator, and different concentrations of glucose (0‐25 mM), was measured by cyclic voltammetry (CV). It was found that the current output from the oxidation of glucose was proportional to the glucose concentrations. This thread‐based electrode system is a viable sensor platform for detecting glucose in the physiological range.  相似文献   

3.
《Electroanalysis》2005,17(8):668-673
A self‐sampling‐and‐flow biosensor was fabricated by sandwiching a nitrocellulose strip on the working electrode side of the double‐sided microporous gold electrodes and a wicking pad on the counter electrode side. The double‐sided microporous electrodes were formed by plasma sputtering of gold on a porous nylon substrate. Sample was taken up to the enzyme‐immobilized working electrode by the capillary action of the front nitrocellulose strip dipped into the sample solution, analyzed electrochemically at the enzyme‐immobilized electrode, and diffuses out to the backside wicking pad through the micropores of the electrodes, constituting a complete flow cell device with no mechanical liquid‐transporting device. Biosensor was formed by co‐immobilizing the glucose oxidase and electron transfer mediator (ferrocene acetic acid) on the thioctic acid self‐assembled monolayer‐modified working electrode. A typical response time of the biosensor was about 5 min with the sensitivity of 2.98 nA/mM glucose, providing linear response up to 22.5 mM. To demonstrate the use of self‐sampling‐and‐flow biosensor, the consumption rate of glucose in the presence of yeast was monitored for five days.  相似文献   

4.
《Electroanalysis》2005,17(21):1991-1994
The development and performance of an end‐column amperometric detection system integrated with disposable screen‐printed electrodes for capillary electrophoresis is presented. In this system, the electrode and capillary can be easily replaced and the capillary/electrode alignment procedure is straightforward. The use of easily replaceable screen‐printed electrodes offers a tremendous benefit for capillary electrophoresis applications requiring frequent replacement of the working electrode due to fouling. This simple and convenient system is very attractive for routine analyses by capillary electrophoresis with electrochemical detection. The separation and determination of uric acid in human urine is presented.  相似文献   

5.
We describe the development, fabrication, and characterization of a novel two‐electrode nanosensor contained within the tip of a needle‐like probe. This sensor consists of two, vertically aligned, carbon structures which function as individual electrodes. One of the carbon structures was modified by silver electrodeposition and chlorination to enable it to function as a pseudo‐reference electrode. Performance of this pseudo‐reference electrode was found to be comparable to that of commercially available Ag/AgCl reference electrodes. The unmodified carbon structure was employed as a working electrode versus the silver‐plated carbon structure to form a two‐electrode sensor capable of characterizing redox‐active analytes. The nanosensor was demonstrated to be capable of electrochemically characterizing the redox behavior of para‐aminophenol (PAP) in both bulk solutions and microenvironments. PAP was also measured in cell lysate to show that the nanosensor can detect small concentrations of analyte in heterogenous environments. As the working and reference electrodes are contained within a single nanoprobe, there was no requirement to position external electrodes within the electrochemical cell enabling analysis within very small domains. Due to the low‐cost manufacturing process, this nanoprobe has the potential to become a unique and widely accessible tool for the electrochemical characterization of microenvironments.  相似文献   

6.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

7.
《Electroanalysis》2003,15(18):1453-1459
A novel method for fabricating a micro gas sensor film on an indium tin oxide (ITO) electrode patterned using micro‐machining technology was developed. A micromanipulation system equipped with a counter electrode (Au; Ø10 μm) and a microsyringe, which was connected to a microinjection system, was first constructed. With this system, micro gas sensor arrays could be successfully prepared on ITO electrodes. Two kinds of micro gas sensor films were prepared, based on polythiophene (PTh) and poly(3‐n‐dodecylthiophene) (PD). The response behavior of conventional PTh and micro‐PTh films against NH3 at three different operating temperatures (25, 40 and 60 °C) was investigated by measuring the resistance of the film. With the micro‐PTh film, a reversible response was observed against NH3 when measured at 40 and 60 °C. In addition, the responsive characteristics of the microsensor films against different testing gases were examined at the three operating temperatures. The resistance of the microsensor films of PTh and PD changed considerably, depending on the type of testing gas, allowing these sensor films to be used for the detection of various gases. Furthermore, the microsensor films had a high stability compared with conventional films prepared from the same polymer.  相似文献   

8.
In this work, we report on the development of a lab‐on‐a‐chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor exhibits a linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations in the 1–30 μM range and a calculated detection limit of 60 nM. The sensor successfully detected zinc in a bovine serum extract and the results were corfirmed by independent AAS measurements. Our results demonstrate the advantageous qualities of this lab‐on‐a‐chip electrochemical sensor for clinical applications, which include small sample volume (µL scale), reduced cost, short response time and high accuracy at low concentrations of analyte.  相似文献   

9.
This work presents a single analytical system able to perform high‐throughput determinations of different pharmaceutical molecules on screen‐printed electrodes (SPEs) assembled on a batch‐injection analysis (BIA) cell. Two types of SPEs, both containing a carbon conductive ink as working electrode, were selected for the determination of levamisole (LVM) in aqueous and sodium levothyroxine (NaLVT) in hydroethanolic media. The main analytical characteristics of the proposed system for both examples are high precision (RSD <3.8 %, n=10), low detection limits (submicromolar range), and high sample‐throughput (>150 h?1) using a single SPE, demonstrating the extended lifetime of such sensors, which are adequate for routine pharmaceutical analysis. The proposed analytical system requires battery‐powered portable devices, including potentiostat and reader, electronic micropipette, BIA cell and SPEs, and can be applied for a wide range of pharmaceutical molecules. In case of analyte adsorption on electrode surface, fast electrode cleaning can be supplied by external stirring easily adapted to the cell, which is demonstrated in this work for NaLVT determination.  相似文献   

10.
A screen‐printed silver strip with a built‐in three‐in‐one electrode (SPAgE) configuration of Ag‐working, Ag‐counter and Ag/AgxO (silver oxides) pseudoreference electrodes has been developed for sensitive and selective electrochemical flow injection analysis (FIA) of aluminum chlorohydrate (ACH) present in antiperspirants, through the free Cl? ion liberated from ACH in aqueous medium, as a redox signal at Ag‐working electrode in pH 6 phosphate buffer solution (PBS). The solution phase and instrumental parameters were systematically optimized. The calibration graph was linear in the window 1–200 ppm concentration of ACH and the lowest detection limit (S/N=3) was 295 ppb with a slope of 0.0989 μA/ppm and regression coefficient of 0.998. Calculated relative standard deviation (RSD) values for the detection of 5 and 50 ppm ACH by this method are 2.21 % and 2.16 %, respectively. Four different antiperspirant deodorants real samples with and without ACH content were successfully analyzed and the detected values obtained were found to be in good agreement with the product labeled values.  相似文献   

11.
We successfully demonstrated microliter (μL) volume determination of Mercury (Hg) using an in‐built screen‐printed three electrodes containing partially crosslinked poly(4‐vinlylpyridine) (designated as pcPVP) modified carbon‐working, carbon‐counter, and Ag+‐quasireference electrodes (SPE/pcPVP) in a pH 4 acetate buffer solution with 2 M KCl by using the square wave anodic stripping voltammetric (SWASV) technique. Instrumental and solution phase conditions were systematically optimized. Experiments were carried out by simply placing a 500 μL‐droplet of Hg containing real sample mixed with the base electrolyte on the SPE/pcPVP surface. The SPE/Ag+ quasi‐reference system shifted the Hg‐SWASV detection potential ca. 250 mV positive, but the quantitative current values were appreciably similar to that of a standard Ag/AgCl reference electrode. Under optimal condition, the calibration graph is linear in the window of 100–1000 ppb of the Hg droplet system with a detection limit of 69.5 ppb (S/N=3). Finally real sample assays were demonstrated for prohibited cosmetic Hg containing skin‐lightening agents in parallel with ICP‐OES measurements.  相似文献   

12.
In this article, we detail a paper‐based three‐electrode electrochemical biosensor using a mitochondria modified Toray carbon paper working electrode. Cyclic voltammetry performed on the paper‐based biosensor and similar electrodes in a common laboratory setup (not in an integrated paper‐based device) compare favorably. In addition, instant detection of malathion with a detection limit of 20 nM by cyclic voltammetry is demonstrated, showing the device can potentially be used as a portable platform for pesticides detection.  相似文献   

13.
《Electroanalysis》2018,30(8):1616-1620
This paper describes a simple, convenient approach to the fabrication of microband electrodes and microband biosensors based on screen printing technology. These devices were printed in a three‐electrode configuration on one strip; a silver/silver chloride electrode and carbon counter electrode served as reference and counter electrodes respectively. The working electrodes were fabricated by screen‐printing a water‐based carbon ink containing cobalt phthalocyanine for hydrogen peroxide detection. These were converted into a glucose microband biosensor by the addition of glucose oxidase into the carbon ink. In this paper, we discuss the fabrication and application of glucose microband electrodes for the determination of glucose in cell media. The dimensions (100–400 microns) of the microband electrodes result in radial diffusion, which results in steady state responses in the absence of stirring. The microband biosensors were investigated in cell media containing different concentrations of glucose using chronoamperometry. The device shows linearity for glucose determination in the range 0.5 mM to 2.5 mM in cell media. The screen‐printed microband biosensor design holds promise as a generic platform for future applications in cell toxicity studies.  相似文献   

14.
《Electroanalysis》2018,30(3):561-570
Complete all‐in‐one multi‐arrayed glutamate (Glut) sensors have been constructed on a silicon‐based micromachined probe composed of micro‐platinum (Pt) working electrodes, a micro‐silver/silver chloride (Ag/AgCl) reference electrode (RE), and a micro‐Pt counter electrode (CE). The OCP shift of the electrodeposited Ag/AgCl on‐probe micro‐reference electrode compared with a Ag/AgCl wire is <0.1 mV/h. The composition ratio of Ag, Cl, and Pt on the electrodeposited on‐probe micro‐reference electrode is observed to be 1.00 : 0.48 : 0.02 analyzed by EDS. The miniaturized amperometric Glut biosensors were constructed on working electrode sites (electrode area: ∼8.5×10−5 cm2) of the microprobe modified with glutamate oxidase (GlutOx) enzyme layers for the selective, fast, and continuous detection of L‐glutamate. The sensor selectivity towards common electroactive interferents has been improved significantly by coating the electrode surface with perm‐selective polymer layers, overoxidized polypyrrole (PPY) and Nafion®. The sensitivity, detection range, and response time of the proposed all‐in‐one Glut biosensors are 204.7±5.8 nA μM−1 cm−2 (N=5), 4.99–109 μM, and 2.7±0.3 sec, respectively and no interferent signals of AA and DA were observed. The sensor can be reused over 19 times of continuous repetitive operation (total measurement time: ∼4 hours) and the sensor sensitivity can retain up to four weeks of storage.  相似文献   

15.
Dye‐sensitized solar cells (DSSCs) have received significant attention from the scientific community since their discovery in 1991. However, the high cost and scarcity of platinum has motivated researchers to seek other suitable materials for the counter electrode of DSSCs. Owing to their exceptional properties such as high conductivity, good electrochemical activity, and low cost, carbon nanotubes (CNTs) have been considered as promising alternatives to expensive platinum (Pt) in the counter electrode of DSSCs. Herein, we provide a Minireview of the CNTs use in the counter electrode of DSSCs. A brief overview of Pt‐based counter electrodes is also discussed. Particular attention is given to the recent advances of counter electrodes with CNT‐based composite structures.  相似文献   

16.
This work reports the construction and characterization of plastic electrochemical micro‐flow‐cells with integrated injection‐moulded polymer electrodes. The three electrodes (working, auxiliary, and reference) were fabricated by injection‐moulding from a conducting grade of polystyrene loaded with carbon fibers. On‐chip reference electrodes were prepared by coating one of the conducting polymer electrodes with a Ag/AgCl layer (implemented either by e‐beam evaporation of Ag followed by electrochemical formation of AgCl or by applying a Ag/AgCl paste). Working electrodes were either polymer electrodes coated with Au by e‐beam evaporation or bare conducting polymer electrodes. The electrodes were integrated into the micro‐flow‐cells by an over‐moulding process followed by ultrasonic welding. The devices were characterized by optical and electrochemical techniques. Studies by cyclic voltammetry (CV), anodic stripping voltammetry (ASV) and electrochemiluminescence (ECL) demonstrate ‘proof–of‐principle’ of the micro‐flow‐cells as electrochemical sensors.  相似文献   

17.
High‐performance electrodes for in vivo electrochemical detection of glucose (GO) are highly desirable. In this work, we propose a new approach to efficiently and precisely prepare a Au nanowire array electrode (ANAE) with a line width of 78 nm and a large sensor area of 60 mm×60 mm for GO detection. In this approach three techniques, i.e., vacuum sputtering‐deposition, holography photolithography, and argon ion‐beam etching, are integrated. The fabricated ANAE exhibits good performance for GO detection. A linear amperometric response to the oxidation of GO in a concentration range of 0.4–10 mM is observed. The ANAE is characterized by its high detection sensitivity, selectivity, stability and good biocompatibility. All of these make it a promising tool for GO detection and other relevant applications.  相似文献   

18.
《Electrophoresis》2018,39(19):2460-2470
This study uses negative dielectrophoresis and AC electroosmosis as a driving mechanism and presents an electrically driven microconcentrator that concentrates the sample in the region exterior to the electrodes (termed as exterior‐electrode electrically driven microconcentrator in this paper). The proposed microconcentrator uses a 3‐D face‐to‐face electrode pair; the top electrode is a relatively large planar electrode, and the bottom electrode is formed with three to six long and thin electrodes connected into an open ring. The sample is brought to the vicinity of the open electrode at the bottom by electroosmotic flow; then, negative dielectrophoresis is used to push the sample away from the electrode and concentrate it in the region surrounded by the open ring electrode. Concentration using an exterior‐electrode electrically driven microconcentrator offers promise for convenient use in conjunction with relevant detection systems. The results indicate that for the proposed exterior‐electrode electrically driven microconcentrator, the optimal frequency is 100 kHz and the optimal voltage is 13 Vp‐p. The corner concentration process at the corners of the bottom open electrodes enables the multi‐corner electrodes to exhibit better concentration results than that exhibited by semicircular‐shaped electrodes. The concentration performance is most favorable when the shape of the open electrode at the bottom is a five‐vertex electrode, enabling a concentration enhancement factor of 55 times for a latex particle solution and 11 times for E. coli. The experimental results also demonstrate that the concentration phenomenon in this study is not induced by non‐specific adsorption and can be repeated multiple times.  相似文献   

19.
Exploration of new property/function of nanomaterials is always a strong impetus in the nanoscience field. Here, a new method of electrochemical conversion (ECC) of magnetic nanoparticles (MNPs) is proposed to endow MNPs with signal generation ability for sensing. Briefly, high potential was applied to split H2O to generate acid, while Fe3O4 MNPs reacted with H+ and produce ferric/ferrous ions, which further reacted with K4Fe(CN)6 to yield Prussian blue (PB) through potential cycling. The ECC method worked well on both home‐made and commercial MNPs with different sizes. The generated PB possessed strong electrochemical activity for further applications. Interestingly, an uneven deposition of PB on working electrode and undesired contamination of the reference and counter electrodes were found when using commercial integrated three‐electrode chip. A 3D‐printed electrochemical cell was designed to facilitate the ECC and avoid drawbacks of commercial integrated electrode. The 3D‐printed electrochemical cell was proven to solve the problem above through spatial separation of electrodes and thus facilitated the ECC process. An electrochemical sensor for H2O2 detection based on the catalysis ability of ECC‐based PB exhibited a linear response from 5 μM to 1 mM, a high sensitivity of 269 μA mM?1 cm?2 and a low detection limit of 0.16 μM (S/N=3), which suggests its promising application prospect in electrochemistry‐related analysis.  相似文献   

20.
The antioxidant ‘reduced glutathione’ tripeptide is conventionally called glutathione (GSH). The oxidized form is a sulfur‐sulfur linked compound, known as glutathione disulfide (GSSG). Glutathione is an essential cofactor for antioxidant enzymes; it provides protection also for the mitochondria against endogenous oxygen radicals. The ratio of these two forms can act as a marker for oxidative stress. The majority of the methods available for estimation of both the forms of glutathione are based on colorimetric and electrochemical assays. In this study, electrochemical sensors were developed for the estimation of both GSH and GSSG. Two different types of transducers were used: i) screen‐printed three‐electrode disposable sensor (SPE) containing carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode; ii) three‐electrode disposable system (CDE) consisting of three copper electrodes. 5,5′‐dithiobis(2‐nitrobenzoic acid) (DTNB) was used as detector element for estimation of total reduced thiol content. The enzyme glutathione reductase along with a co‐enzyme reduced nicotinamide adenine dinucleotide phosphate was used to estimate GSSG. By combining the two methods GSH can also be estimated. The detector elements were immobilized on the working electrodes of the sensors by bulk polymerization of acrylamide. The responses were observed amperometrically. The detection limit for thiol (GSH) was less than 0.6 ppm when DTNB was used, whereas for GSSG it was less than 0.1 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号