首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nomenclature  τ  wallshearstressγshearrateτy yieldstressηc Cassonviscosityktheconsistencyindexnnon_Newtonianindexτp shearstressofthepthelementωangularvelocityRvessel’sradiusCwavespeedM  magneticparameter (Hartmannnumber)u,w velocitycomponentinther_andz_directions,respectivelyP  pressureα  unsteadinessparameter k , R meanparametersTp relaxationtimeofthepthelementρ densityIntroductionTheimportancetoatherogenesisofarterialflowphenomenasuchasflowseparation ,recirculationands…  相似文献   

2.
Hemodynamic stresses are involved in the development and progression of vascular diseases. This study investigates the influence of mechanical factors on the hemodynamics of the curved coronary artery in an attempt to identify critical factors of non‐Newtonian models. Multiphase non‐Newtonian fluid simulations of pulsatile flow were performed and compared with the standard Newtonian fluid models. Different inlet hematocrit levels were used with the simulations to analyze the relationship that hematocrit levels have with red blood cell (RBC) viscosity, shear stress, velocity, and secondary flow. Our results demonstrated that high hematocrit levels induce secondary flow on the inside curvature of the vessel. In addition, RBC viscosity and wall shear stress (WSS) vary as a function of hematocrit level. Low WSS was found to be associated with areas of high hematocrit. These results describe how RBCs interact with the curvature of artery walls. It is concluded that although all models have a good approximation in blood behavior, the multiphase non‐Newtonian viscosity model is optimal to demonstrate effects of changes in hematocrit. They provide a better stimulation of realistic blood flow analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We investigated the deformation of a strong shear thinning droplet undergoing simple shear flow in a Newtonian liquid. The droplet was an aqueous solution of poly(ethylene oxide) end capped with an alkyl group that forms spherical micelles in aqueous solution. At high concentrations and below a critical temperature, the jammed micelles showed strong shear thinning behaviour, and neither a yield stress nor a Newtonian viscosity was observed. At small shear rates, the droplet rotated and aligned in the flow, but did not deform or only very weakly. At high shear rates, the droplet deformation increased with increasing shear rate. The deformed droplet did not relax after the shear was stopped except for a modest rounding of the edges. For each shear rate, an apparent viscosity, η ad, of the equivalent Newtonian droplet was calculated assuming affine deformation. η ad showed a power law dependence on the capillary number Ca with an exponent of − 1.8 and was larger than the shear viscosity of the micelle suspension at the same shear rates. The results were explained by the existence of a strong gradient of the viscosity inside the droplet leading to a very low viscosity fluid layer near the droplet/matrix interface.  相似文献   

4.
We investigate a variety of different semidilute polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time measured in the CaBER with relaxation times based on the first normal stress difference and the zero shear polymer viscosity that we measure in our rheometer. All of these three measurable quantities depend on different fluid parameters—the viscosity of the solvent, the polymer concentration within the solution, and the molecular weight of the polymers—and on the shear rate (in the shear flow measurements). Nevertheless, we find that the first normal stress coefficient depends quadratically on the CaBER relaxation time. Several scaling laws are presented that could help to explain this empirical relation.  相似文献   

5.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The influence of shear thinning on drop deformation is examined through a numerical simulation. A two‐dimensional formulation within the scope of the boundary element method (BEM) is proposed for a drop driven by the ambient flow inside a channel of a general shape, with emphasis on a convergent–divergent channel. The drop is assumed to be shear thinning, obeying the Carreau–Bird model and the suspending fluid is Newtonian. The viscosity of the drop at any time is estimated on the basis of a rate‐of‐strain averaged over the region occupied by the drop. The viscosity thus changes from one time step to the next, and it is strongly influenced by drop deformation. It is found that small drops, flowing on the axis, elongate in the convergent part of the channel, then regain their spherical form in the divergent part; thus confirming experimental observations. Newtonian drops placed off‐axis are found to rotate during the flow with the period related to the initial extension, i.e. to the drop aspect ratio. This rotation is strongly prohibited by shear thinning. The formulation is validated by monitoring the local change of viscosity along the interface between the drop and the suspending fluid. It is found that the viscosity averaged over the drop compares, generally to within a few per cent, with the exact viscosity along the interface.  相似文献   

7.
Flows through abrupt contractions are dominated by the rapid extension experienced in passing through the contraction. Thus, it is useful to employ a fluid model which considers the extensional viscosity explicitly in its constitutive equation. In this paper, the quasi-Newtonian fluid model, which admits shear thinning and extension thickening of the viscosity depending on the local type of flow as proposed by Schunk and Scriven [P. Schunk, L. Scriven, J, Rheol 34 (1990) 1085], is applied to the numerical simulation of the flow of a dilute polyacrylamide solution through a planar 4 : 1 contraction. In this theory the extra stress tensor does not only depend on the rate of strain tensor but also on the relative rate of rotation of the fluid. The material function – the viscosity function – is allowed to depend on the invariants of these two kinematic tensors yielding a local distinction between extensional, shear or rotation dominated flow. The governing equations are discretized using a finite volume method. Different model parameters are varied and the simulation results are compared with the generalized Newtonian fluid and experimental data.  相似文献   

8.
Light scattering calculations based on Anomalous Diffraction Theory (AD), Rayleigh spheroids, and flexible macromolecules are used to propose a phenomenological explanation for the relationship between shear-thickening and structure formation in polymer solutions. Quantitative comparisons are made to experimental data for the rheo-optical behavior of fractionated polystyrene solutions presented in part I of this paper. Results from the ADA calculations suggest that the viscosity and dichroism behavior can be attributed to the production and growth of micron-size, optically isotropic structures during flow. The saturation dichroism behavior exhibited by the solutions which shear thin can be attributed to the formation of entanglement regions which achieve a fixed size and act as Rayleigh spheroids in their scattering behavior. The magnitude and shear rate dependence of the observed birefringence can be accounted for on the basis of the non-linear, flexible macromolecule model, implying that birefringence is governed by the polymer chains remaining in solution which do not take part in the structure formation. The latter result is consistent with the experimental observation that the birefringence dependence on shear rate is the same whether the solution exhibits shear thickening or shear thinning in its viscosity behavior.  相似文献   

9.
Measurements of the viscosity of an antimisting polymer solution in capillaries indicated that this fluid exhibits a complex non-Newtonian nature involving both shear-thinning at low shear rate and abrupt time-dependent shear-thickening past a critical shear rate. Various parameters such as concentration, aging, photodegradation, intentional mechanical degradation, and temperature were shown to have unexpectedly similar effects on the viscous characteristics of the fluid.Extensive friction and heat transfer measurements were also carried out, and it was found that meaningful correlations for these results can be developed if an adequate apparent viscosity model is used for the computations. In particular, all fluid properties must be evaluated at the inner wall temperature, and both the gelation and degradation induced in the test tube itself must be taken into account.It was then possible to show that this peculiar fluid is in fact an asymptotic drag and heat transfer reducer, even though it exhibits dramatic discontinuous shear-thickening characteristics. Various turbulent flow results are presented that were obtained under fully-developed conditions as well as in the very long entrance region observed. It was additionally verified that after severe degradation this fluid can revert to a Newtonian nature as evidenced by its viscosity, friction, and heat transfer properties.  相似文献   

10.
This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells’ membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.  相似文献   

11.
The interpolation requirements for the loosely coupled finite element solution of the Navier–Stokes equations and Phillips shear‐induced particle diffusion model are discussed. It is shown that a second‐order approximation of the fluid velocity field is required to adequately capture the spatial derivatives of the rate‐of‐strain tensor. To circumvent this limitation, a shear‐rate smoothing procedure is introduced, thereby allowing the use of lower‐order approximations for the fluid phase. Numerical experiments comparing the convergence and CPU cost of the different tetrahedral interpolation bases are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
 The apparent viscosities of purely viscous non-Newtonian fluids are shear rate dependent. At low shear rates, many of such fluids exhibit Newtonian behaviour while at higher shear rates non-Newtonian, power law characteristics exist. Between these two ranges, the fluid's viscous properties are neither Newtonian or power law. Utilizing an apparent viscosity constitutive equation called the “Modified Power Law” which accounts for the above behavior, solutions have been obtained for forced convection flows. A shear rate similarity parameter is identified which specifies both the shear rate range for a given fluid and set of operating conditions and the appropriate solution for that range. The results of numerical solutions for the friction factor–Reynolds number product and for the Nusselt number as a function of a dimensionless shear rate parameter have been presented for forced fully developed laminer duct flows of different cross-sections with modified power law fluids. Experimental data is also presented showing the suitability of the “Modified Power Law” constitutive equation to represent the apparent viscosity of various polymer solutions. Received on 21 August 2000  相似文献   

13.
Recently, Massoudi (2011a) derived a generalized form of a constitutive relation related to Reiner's fluid model for wet sand, where not only the effects of volume fraction are incorporated in the rheological properties of the fluid, but also the shear viscosity depends on the shear rate. In this paper, we use this model to study the fully developed flow of granular-like materials down an inclined plane. The governing equations are made dimensionless and numerical solutions are presented for the various dimensionless parameters.  相似文献   

14.
A viscosity model for suspensions of rigid particles with predictive capability over a wide range of particle volume fraction and shear conditions is of interest to quantify the transport of suspensions in fluid flow models. We study the shear viscosity of suspensions and focus on the effect of particle aspect ratio and shear conditions on the rheological behavior of suspensions of rigid bi-axially symmetric ellipsoids (spheroids). We propose a framework that forms the basis to microscopically parameterize the evolution of the suspension microstructures and its effect on the shear viscosity of suspensions. We find that two state variables, the intrinsic viscosity in concentrated limit and the self-crowding factor, control the state of dispersion of the suspension. A combination of these two variables is shown to be invariant with the imposed shear stress (or shear rate) and depends only on the particle aspect ratio. This self-similar behavior, tested against available experimental and numerical data, allows us to derive a predictive model for the relative viscosity of concentrated suspensions of spheroids subjected to low (near zero) strain rates. At higher imposed strain rates, one needs to constrain one of the state variables independently to constrain the state of dispersion of the suspension and its shear dynamic viscosity. Alternatively, the obtained self-similar behavior provides the means to estimate the state variables from the viscosity measurements made in the laboratory, and to relate them to microstructure rearrangements and evolution occurring during deformation.  相似文献   

15.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

16.
The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calcific aortic valve disease. We characterize the spatiotemporal characteristics of aortic sinus vortex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High-resolution time-resolved (2 kHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water–glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in timescales as revealed using time bin-averaged vectors and corresponding instantaneous streamlines. There exist small timescale vortices and a large timescale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatiotemporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200 Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and timescales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.  相似文献   

17.
Steady and unsteady laminar flows in a planar 2D T-junction, having a dividing or bifurcating flow arrangement (one main channel with a side branch at 90°), are studied numerically for non-Newtonian inelastic fluids whose rheological characteristics are similar to those of blood. These computational fluid dynamics simulations explore a wide range of variation of inertia (through the Reynolds number, Re), flow rate ratio (proportion of extracted to inlet flow rates, β) and shear thinning (the power-law index of the model, n), and investigate their influence on the sizes and intensities of the recirculating eddies formed near the bifurcation, and on the resulting distribution of the shear stress fields. Such flow characteristics are relevant to hemodynamics, being related to the genesis and development of vascular diseases, like the formation of atherosclerotic plaques and thrombi near arterial bifurcations.To represent the decay of viscosity with shear rate we apply the Carreau-Yasuda equation, one of the most utilized Generalized Newtonian Fluid model in blood simulations. In many comparisons of the present parametric study it was require that the level of inertia was kept approximately the same when n was varied. This implied a consistent definition of Re with the viscosity calculated at a representative shear rate.  相似文献   

18.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

19.
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.  相似文献   

20.
Abstract

We consider the nonlinear aeroelasticity problem of the interaction between a viscous, incompressible fluid and Lin elastic solid undergoing large displacement. The non-linearities of the problem formulation include the solid and fluid governing equations. as well as thc dependence of the How geometry on the solid deformation. The resulting coupling is thus two-way. We develop domain-decomposition methods for solution and sensitivity analysis of the coupled problem. The domain decomposition is in the form of a block-Gauss-Seidel-like prcconditioncr that decomposes ihc coupled-domain problem into distinct nonovcrlapping fluid and solid subdotnain problems. The preconditioner thus enables exploitation or single-domain algorithms for solid and fluid mechanics discretization and solution. On the other hand, two-way fluid-solid coupling is retained within the residuals, which is essential for correct sensitivities. Sensitivities of field quantities can be found with little additional work beyond that required for solving the coupled fluid-solid system. The methodology developed here is illustrated by the solution of a problem of viscous incompressible flow about an infinite clastic cylinder. Sensitivities of the resulting velocity and displacement fields with respect to elastic modulus and fluid viscosity are computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号