首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the mitochondrial DNA variation in populations is commonly carried out in many fields of biomedical research. We propose the analysis of mitochondrial DNA coding region SNP (mtSNP) variation to a high level of phylogenetic resolution based on MALDI‐TOF MS. The African phylogeny has been chosen to test the applicability of the technique but any other part of the worldwide phylogeny (or any other mtSNP panel) could be equally suitable for MALDI‐TOF MS genotyping. SNP selection thus aimed to fully cover all the mtSNPs defining major and minor branches of the known African tree, including, macro‐haplogroup L, and haplogroups M1, and U6. A total of 230 mtSNPs were finally selected. We used tests samples collected from two different African locations, namely, Mozambique and Chad Basin. Different internal genotyping controls and other indirect approaches (e.g. phylogenetic checking coupled with automatic sequencing) were used in order to evaluate the reproducibility of the technique, which resulted to be 100% using samples previously subjected to whole genome amplification. The advantages of the MALDI‐TOF MS are also discussed in comparison with other popular methods such as minisequencing, highlighting its high‐throughput nature, which is particularly suitable for case–control medical studies, forensic databasing or population and anthropological studies.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

3.
A multiplex polymerase chain reaction (PCR) detection method for the simultaneous detection of animal-derived components from deer, cow, sheep, pig and horse in edible meat was established, and a multiplex PCR detection kit for the rapid detection of animal-derived components was developed. According to the mitochondrial cytochrome b (Cyt b) gene of bovine species, sheep species, pig species and horse species and the mitochondrial cytochrome c oxidase subunit I (COX 1) gene of sika deer and red deer as the target gene sequences of primers, the specific primers of five different species were designed, the PCR system was optimized, and the multiplex PCR identification method of five animal-derived components was established. The minimum detection amount was determined by sensitivity test. The results showed that five meat specific amplification bands could be found at the same time in the same reaction system, including 173 bp fragment for venison, 148 bp for beef, 261 bp for pork, 100 bp for mutton and 424 bp for horse, indicating that the method is specific and stable. The minimum detection limit by this method was 1 ng/μL, showing a high sensitivity. According to the different sites in different areas of animal mitochondrial genes, a multiplex PCR detection method was established and a detection kit was developed, and the rapid, sensitive, stable and high-throughput detection of five animal-derived components and adulterated animal components in edible meat can be realized by using the kit.  相似文献   

4.
Li MW  Lin RQ  Song HQ  Sani RA  Wu XY  Zhu XQ 《Electrophoresis》2008,29(13):2912-2917
Sequence variability in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunits 1 and 4 (nad1 and nad4), among and within Toxocara canis, T. cati, T. malaysiensis, T. vitulorum and Toxascaris leonina from different geographical origins was examined by a mutation-scanning approach. A portion of the cox1 gene (pcox1), a portion of the nad1 and nad4 genes (pnad1 and pnad4) were amplified separately from individual ascaridoid nematodes by polymerase chain reaction and the amplicons analyzed by single-strand conformation polymorphism (SSCP). Representative samples displaying sequence variation in SSCP profiles were subjected to sequencing in order to define genetic markers for their specific identification and differentiation. While the intra-specific sequence variations within each of the five ascaridoid species were 0.2-3.7% for pcox1, 0-2.8% for pnad1 and 0-2.3% for pnad4, the inter-specific sequence differences were significantly higher, being 7.9-12.9% for pcox1, 10.7-21.1% for pnad1 and 12.9-21.7% for pnad4, respectively. Phylogenetic analyses based on the combined sequences of pcox1, pnad1 and pnad4 revealed that the recently described species T. malaysiensis was more closely related to T. cati than to T. canis. These findings provided mtDNA evidence for the validity of T. malaysiensis and also demonstrated clearly the usefulness and attributes of the mutation-scanning sequencing approach for studying the population genetic structures of these and other nematodes of socio-economic importance.  相似文献   

5.
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed‐species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR‐based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one‐tube assay is simple, low‐cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.  相似文献   

6.
A previously developed multiplex assay with 44 individual identification SNPs was expanded to a 55plex assay. Fifty‐four highly informative SNPs and an amelogenin sex marker were amplified in one PCR reaction and then detected with two SNaPshot reactions using CE. PCR primers for four loci, 28 single‐base extension primers, and the reaction conditions were altered to improve the robustness of the method. A detailed approach for allele calling was developed to guide analysis of the electropherogram. One hundred and eighty unrelated individuals and 100 father‐child‐mother trios of the Han population in Hebei, China were analyzed. No mutation was found in the SNP loci. The combined mean match probability and cumulative probability of exclusion were 1.327 × 10?22 and 0.999932, respectively. Analysis of the 54 SNPs and 26 STRs (included in the AmpFLSTR Identifiler and Investigator HDplex kits) showed no significant linkage disequilibriums. Our research shows that the expanded SNP multiplex assay is an easily performed and valuable method to supplement STR analysis.  相似文献   

7.
Derivatized β‐cyclodextrin (β‐CD) functionalized monolithic columns were prepared by a “one‐step” strategy using click chemistry. First, the intended derivatized β‐CD monomers were synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD and then sulfonation or methylation was carried out. Finally, monolithic columns were prepared through a one‐step in situ copolymerization of the derivatized β‐CD monomer and ethylene glycol dimethacrylate. The sulfated β‐CD‐based monolith was successfully applied to the hydrophilic interaction liquid chromatography separation of nucleosides and small peptides, while the methylated β‐CD‐functionalized monolith was useful for the separation of nonpolar compounds and drug enantiomers in capillary reversed‐phase liquid chromatography. The structures of the monomers were characterized by Fourier transform infrared spectroscopy and mass spectrometry. The physicochemical properties and column performance of monoliths were evaluated by scanning electron microscopy and micro high performance liquid chromatography. This strategy has considerable prospects for the preparation of other derivatized CD‐functionalized methacrylate monoliths.  相似文献   

8.
Two isomeric Zinc (II) complexes constructed by 3,5‐bis(1‐imidazoly) pyridine has been synthesized and characterized by single crystal X‐ray diffraction, elemental analyses and infrared spectroscopy. The binding mode and ability of complex 1–2 with CT‐DNA were studied by UV and fluorescence spectra. The intrinsic binding constant Kb (Kb1 = 2.305 × 104 M?1, Kb2 = 3.095 × 104 M?1) and the observed association constant Kobs (Kobs1 = 1.523*106 M?1, Kobs2 = 2.057*106 M?1) indicated that the insertion ability of complex 2 with CT‐DNA is stronger than complex 1. Gel electrophoresis showed that complexes have a good ability to hydrolyze cleavage pBR322 plasmid DNA. The cytotoxicity and apoptosis studies showed that complexes exhibited excellent cytotoxic activity against HeLa cells, especially complex 2 had better growth inhibition than Cisplatin. Molecular docking study simulated the binding model of complexes with DNA (PDB:4av1), showing an imidazole plane of complex 2 can be inserted into a DNA base pair in relative parallel. Both complexes can be used as potential anticancer agents.  相似文献   

9.
10.
Nowadays, feed and food safety and traceability are of primary importance. Hence, a correct labeling of the different products is highly desirable in general, but mandatory for those people who are suffering from eating disorders and food allergies. Among the technologies that have been developed for feed and food analysis, the patented tubulin‐based polymorphism (TBP) method emerges as an easy, versatile, and inexpensive diagnostic tool. Initially used to fingerprint different plant species and varieties, TBP was then successfully applied to trace species in mixtures of plant origin such as commercial feeds. TBP is a DNA‐based molecular marker, that makes use of PCR for the selective amplification of plant β‐tubulin introns. Amplified fragments are then separated by PAGE and visualized by silver staining. We have now developed an improved version of TBP. Based on capillary electrophoresis and fluorescence detection, it makes the method automatic, more sensible, reproducible, and faster. Compared to the classic TBP, this new version allows to obtain a better data resolution and an easier interpretation of the results, clearing the way to large‐scale feed/food diagnostics.  相似文献   

11.
Dimemorfan phosphate has been widely used for 40 years throughout the world for the treatment of coughs. This is the first report on the use of an LC‐MS/MS‐based assay for the determination of dimemorfan in human plasma using estazolam as an internal standard after one‐step protein precipitation with acetonitrile. Chromatographic separation was achieved on a Phenomenex Luna C18 column (3 µm, 50 × 2.0 mm) using a fast gradient method, which involves water and methanol as the mobile phase (both containing 0.1% formic acid). Dimemorfan and estazolam were detected with proton adducts at m/z values of 255.8 → 155.1 and 295.0 → 267.0, respectively, in the selected reaction monitoring positive mode. The linear dynamic range of the assay was 0.04–5.00 ng/mL. The chromatographic run time for each plasma sample was <5 min. The method was proven to be accurate, precise, and repeatable. Finally, the developed method was successfully applied for the determination of dimemorfan in a pharmacokinetic study using healthy Chinese subjects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
《Electrophoresis》2017,38(13-14):1780-1787
An enzyme and antibody dual labeled gold nanoparticles enhancing chemiluminescence strategy was developed for highly sensitive CE immunoassay (IA) of prostate‐specific antigen (PSA). In this work, gold nanoparticles were labeled with horseradish peroxidase and antiprostate specific antigen‐antibody, and used as the marker (Ab*). After PSA (antigen, Ag) was added into the system, a noncompetitive immune reaction was happen between Ab* and Ag to form an immune complex (Ag–Ab*). Subsequently, the obtained Ag–Ab* and unreacted Ab* were separated by CE, and the chemiluminescence intensity of Ag‐Ab* was used to estimate PSA concentration. The calibration curve showed a good linearity in the range of 0.25–10 ng/mL. Based on a S/N of 3, the detection limit for PAS was estimated to be 0.092 ng/mL. Proposed CE method was applied for PSA quantification in human serum samples from healthy volunteers and patients with prostate cancer. The obtained results demonstrated that the proposed CE method may serve as an alternative tool for clinical analysis of PSA.  相似文献   

13.
A novel microfluidic chip‐based fluorescent DNA biosensor, which utilized the electrophoretic driving mode and magnetic beads‐based “sandwich” hybridization strategy, was developed for the sensitive and ultra‐specific detection of single‐base mismatch DNA in this study. In comparison with previous biosensors, the proposed DNA biosensor has much more robust resistibility to the complex matrix of real saliva and serum samples, shorter analysis time, and much higher discrimination ability for the detection of single‐base mismatch. These features, as well as its easiness of fabrication, operation convenience, stability, better reusability, and low cost, make it a promising alternative to the SNPs genotyping/detection in clinical diagnosis. By using the biosensor, we have successfully determined oral cancer‐related DNA in saliva and serum samples without sample labeling and any preseparation or dilution with a detection limit of 5.6 × 10?11 M, a RSD (n = 5) < 5% and a discrimination factor of 3.58–4.54 for one‐base mismatch.  相似文献   

14.
In the last few years, halogen bonds have been exploited in a variety of research areas both in the solid state and in solution. Nevertheless, several factors make formation and detection of halogen bonds in solution challenging. Moreover, to date, few chiral molecules containing electrophilic halogens as recognition sites have been reported. Recently, we described the first series of halogen‐bond‐driven enantioseparations performed on cellulose tris(3,5‐dimethylphenylcarbamate) by high‐performance liquid chromatography. Herein the performances of amylose tris(3,5‐dimethylphenylcarbamate) as halogen bond acceptor were also investigated and compared with respect to cellulose tris(3,5‐dimethylphenylcarbamate). With the aim to explore the effect of polysaccharide backbone on the enantioseparations, the thermodynamic parameters governing the halogen‐dependent enantioseparations on both cellulose and amylose polymers were determined by a study at variable temperature and compared. Molecular dynamics were performed to model the halogen bond in polysaccharide‐analyte complexes. Chiral halogenated 4,4′‐bipyridines were used as test compounds (halogen bond donors). On this basis, a practical method for detection of stereoselective halogen bonds in solution was developed, which is based on the unprecedented use of high‐performance liquid chromatography as technical tool with polysaccharide polymers as molecular probes (halogen bond acceptors). The analytical strategy showed higher sensitivity for the detection of weak halogen bonds.  相似文献   

15.
Hyphenated techniques and especially ultra‐high performance liquid chromatography‐mass spectrometry (UHPLC‐MS) are nowadays widely employed in natural products research. However, the complex nature of plant extracts complicates considerably the analysis and the identification of their constituents. Nevertheless, new MS analyzers with increased resolving power and accuracy such as the orbital trap (Orbitrap) could facilitate drastically this process. The objective of this study is the development of a new structure‐oriented approach based on fast UHPLC‐high‐resolution (HR)MS and HRMS/MS methodologies for the identification of isoflavonoids in crude extracts. In addition, aims to assist dereplication procedures, to decrease the laborious isolation steps and orient the focused isolation of compounds of interest. As a proof of concept, the methanol extract of the stem bark of Amphimas pterocarpoides (Leguminosae) was selected. Based on chromatographic (retention time, polarity) and spectrometric features (ultraviolet spectra, accurate m/z, proposed elemental composition, ring double bond equivalent, and relative isotopic abundance) as well as HRMS/MS spectra, several isoflavonoids were identified. In order to verify the proposed structures, 11 isoflavonoids were selectively isolated and unambiguously identified using 1&2D nuclear magnetic resonance techniques. Moreover, the isolated isoflavonoids were studied in HRMS/MS level, employing electrospray ionization and atmospheric pressure chemical ionization sources, in both modes. Useful information regarding their fragmentation patterns was obtained, and characteristic diagnostic ions were defined for the identification of methoxylated isoflavones, dihydroisoflavones and 5‐hydroxylated isoflavonoids. Based on the current results, the proposed dereplication strategy was verified and could comprise a novel approach for the analysis of crude extracts in the future not only for isoflavonoids but also for other chemical classes of natural products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Studies have shown that the administration of androstenedione (ADIONE) significantly increases the urinary ratio of testosterone glucuronide to epitestosterone glucuronide (T/E) – measured by gas chromatography/mass spectrometry (GC/MS) – in subjects with a normal (≈1) or naturally high (>1) initial values. However, the urinary T/E ratio has been shown not to increase in subjects with naturally low (<1) initial values. Such cases then rely on the detection of C6‐hydroxylated metabolites shown to be indicative of ADIONE administration. While these markers may be measured in the routine GC/MS steroid profile, their relatively low urinary excretion limits the use of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to specifically confirm ADIONE administration based on depleted 13C content. A mass spectrometry strategy was used in this study to identify metabolites of ADIONE with the potential to provide compound‐specific detection. C4‐hydroxylation was subsequently shown to be a major metabolic pathway following ADIONE administration, thereby resulting in urinary excretion of 4‐hydroxyandrostenedione (4OH‐ADIONE). Complementary analysis of 4OH‐ADIONE by GC/MS and GC/C/IRMS was used to confirm ADIONE administration. Copyright © 2008 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

17.
A voltage‐programming‐based capillary gel electrophoresis method with a laser‐induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin‐converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin‐converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin‐converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage‐programming capillary gel electrophoresis method with laser‐induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease‐related specific DNA molecules.  相似文献   

18.
A trap that closes with a “click” : The copper‐catalyzed azide–alkyne cycloaddition can occur in different G‐quadruplex structures (see scheme). The species trapped by the click reaction can then be separated and analyzed. By using this approach, a DNA–RNA hybrid‐type G‐quadruplex structure formed by human telomeric DNA and RNA sequences was detected.

  相似文献   


19.
Quantitative analysis of biotin in biological fluids, foods, and pharmaceutical is important for diagnosis and treatment of biotin‐related diseases and health maintenance. In this work, a novel G‐quadruplex/hemin DNAzyme‐based microchip electrophoresis chemiluminescence (CL) assay method was established for rapid and highly sensitive detection of biotin. This method is based on the specific binding between biotin and streptavidin, the catalytic CL characteristics of G‐quadruplex/hemin DNAzyme to the oxidation–reduction reaction of hydrogen peroxide with luminol, and the on‐line separation function of microchip electrophoresis. Under the optimal experimental conditions, on‐chip biotin analysis was achieved within 1 min. The CL intensity is linearly proportional to the concentration of biotin in the range of 13–630 nM with a detection limit of 6.4 nM. The proposed method has been applied for the detection of biotin in flour, biotin contents in three flour samples are found in the range of 199–223 ng/g with a mean value of 214 ng/g. The recoveries were in the range of 94–103%. With excellent sensitivity and good selectivity, the proposed method could be applied in a wide range of biological fluids, foods, and pharmaceutical analysis.  相似文献   

20.
Detecting pesticide residues in human serum is a challenging process. In this study we developed and validated a method for the extraction and recovery of residues of multiple classes of pesticides from serum using one reagent. Salt‐assisted acetonitrile extraction and high‐performance liquid chromatography with quadrupole time of flight tandem mass spectrometry were used to quantitate 34 pesticides classified in nine groups of chemicals in human serum samples, which are frequently detected in food. The recoveries for 33 of analyzed pesticides ranged from 86 to 112% with relative standard deviations below 15%. The limits of quantitation and linearity of 31 of the pesticides were 1 µg/L and >0.990, respectively. The lower limit of quantitation has been reported in the literature particularly for multi‐classes pesticide mixtures in human serum. The salt–acetonitrile reagent was allowed to achieve good recoveries and detection limits, which could be attributed to salt altering the solvent polarity, preferentially collecting the organic phase in the solution, and promoting the extraction. The developed method was applied for two organophosphate pesticide metabolites, diethylphosphate and 3,5,6‐trichloro‐2‐pyridinol, in serum from rats that were fed a nonlethal quantity of chlorpyrifos. The concentrations of these two were 252.18 ± 15.47 and 0.63 ± 0.23 µg/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号