首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid|liquid interfaces provide a natural boundary and a reactive interface where an organic phase is in contact with an aqueous analyte. The selectivity of ion transfer processes at liquid|liquid interfaces can help to provide sensitivity, introduce reactive reagents, or allow analyte accumulation at the electrode surface. In this study, microdroplet deposits of the organic liquid 4‐(3‐phenylpropyl)‐pyridine (PPP) with the ferrocenylmethyl‐dodecyldimethylammonium+ (FDA+) redox system are deposited onto a basal plane pyrolytic graphite electrode and employed to transfer anions from the aqueous into the organic phase. A clear trend of more hydrophobic anions transferring more readily (at more negative potentials) is observed and an ESI‐mass spectrometry method is developed to confirm the transfer. Subsequently, the electrocatalytic oxidation of sulfite, SO32?, within the organic phase and in the presence of different electrolyte anions is investigated. Competition between sulfite transfer and inert anion transfer occurs. The electrocatalytic sulfite oxidation is suppressed in the presence of PF6? and occurs most readily in the presence of the hydrophilic nitrate anion. The resulting process can be classified as an electrocatalytic EIC′‐process (E: electron transfer; I: ion transfer; C: chemical reaction step). The effectiveness of the electrocatalytic process is limited by i) competition during anion transfer and ii) the liquid|liquid interface acting as a diffusion barrier. The analytical sensitivity of the method is limited to ca. 100 μM SO32? (or ca. 8 ppm) and potential approaches for improvement of this limit are discussed.  相似文献   

2.
At room temperature, tetraoctylphosphonium bromide is a viscous ionic liquid, this gel‐like organic phase can be cast over a basal‐plane graphite electrode (BPGE). Cyclic voltammetry at such a modified electrode, in contact with an aqueous solution have revealed one reversible oxidation and five reversible reduction steps for a LuIII bisphthalocyanine dissolved in the ionic liquid film, a proof that the highly reactive reduced species were protected from interaction with water in this highly lipophilic phase. It has also been shown that the redox properties are influenced by the ions in the aqueous phase, a property which has been attributed to ion‐pairing effects; obviously, the ion transfers at the organic|aqueous interface has been ignored. Electrochemistry of Lu(III)[(tBu)4Pc]2 (cyclic voltammetry and square wave voltammetry) under similar conditions shows that the nature and concentration of the anion in the aqueous solution in contact with the ionic liquid film influences the potential of the electrode reaction. This can be attributed to variations of the interfacial potential and also because the organic phase is an anion exchanger. Moreover, SWV experiments suggest that the rate of the overall reaction varies with the nature and concentration of the anion of the aqueous electrolyte, which implies that the ion transfer through the organic|aqueous interface is slower than the electron exchange rate of the molecule at the surface of graphite.  相似文献   

3.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

4.
The triple phase boundary transfer of anions from the aqueous into an organic phase can be driven electrochemically here with the tetraphenylporphyrinato‐Mn(III/II) (or TPPMn) redox system in 4‐(3‐phenylpropyl)‐pyridine) (or PPP). Anions investigated are perchlorate, chloride, fluoride, and bicarbonate. The bicarbonate and fluoride transfer processes are shown to be chemically more complex compared to the perchlorate and chloride cases with UV‐vis‐spectroelectrochemical measurements indicating a combination of HCO3?/CO32? transfer processes and association of fluoride with TPPMn(III)+, respectively. In situ spectroelectrochemistry is developed for ion‐transfer voltammetry into sub‐microliter organic phase regions on mesoporous ITO conducting film electrodes.  相似文献   

5.
Electrocatalysis of epinephrine at gold electrode pre‐modified with the self‐assembled monolayer of cysteamine and subsequently integrated with novel metallo‐octacarboxyphthalocyanine (MOCPc where M=Fe, Co and Mn) complexes (Au‐Cys‐MOCPc) was investigated. The electrodes showed response to the presence of epinephrine. The oxidation peak potential (Ep/V vs. Ag|AgCl, sat'd KCl) and charge transfer resistance (Rct (kΩ)) in epinephrine solution depend markedly on the central metal of the phthalocyanine cores: Au‐Cys‐FeOCPckch=4.1×107 M?1 s?1) which is higher than that of the Au‐cys‐CoOCPc or Au‐cys‐MnOCPc electrode. Mechanism, recognizing the mediation of the electrocatalytic process by the central M(II)/M(III) redox processes was proposed. Epinephrine electro‐oxidation at the Au‐cys‐FeOCPc electrode was studied in more details for the response characteristics. The diffusion coefficient of epinephrine was evaluated as (2.62±0.23)×10?9 cm2 s?1. It was established that Au‐Cys‐FeOCPc is suitable for sensitive determination of epinephrine in physiological pH (7.40) conditions showing linear concentration range of up to 300 nM, with excellent sensitivity (0.53±0.01 nA nM?1), and very low limits of detection (13.8 nM) and quantification (45.8 nM). The peak separation between ascorbic acid and epinephrine is large enough (190 mV) to permit simultaneous determination of both epinephrine and ascorbic acid in physiological pH 7.4 conditions using the Au‐cys‐FeOCPc electrode. Au‐cys‐FeOCPc electrode was successfully used for the determination of epinephrine in epinephrine hydrochloric acid injection with recovery of ca. 98.4%.  相似文献   

6.
The redox system K4Fe(CN)6 adsorbed into anion exchanger particles (Dowex 1×2 of typically 200 µm diameter) and impregnated with 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate ionic liquid (BMIM+BF4?) in contact to a 50 µm diameter platinum microelectrode show well‐defined Fe(III/II) voltammetric responses. Processes are studied at the ionic liquid sphere | electrode | gas interface in the presence of dry or 80 % relative humidity argon gas flow. Due to the hygroscopic nature of BMIN+BF4? currents are sensitive to humidity levels. Pulsed and continuous microwave activation (2.45 GHz) is shown to occur locally at the tip of the platinum microelectrode due to focusing of microwave energy. Impedance experiments reveal the presence of a thin active film of ionic liquid.  相似文献   

7.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

8.
A carbon screen‐printed electrode modified in‐situ with lead film (PbF‐SPCE) was applied for the adsorptive stripping voltammetric determination of Co(II) in the form of a complex with 1,2‐cyclohexanedione dioxime. Lead film was electrochemically deposited in situ on SPCE from a 0.2 M ammonia buffer solution (pH 8.7) containing 5 ? 10?5 M Pb(NO3)2 and 5 ? 10?5 M nioxime. Due to the very low LOD (0.003 µgL?1, i.e., 0.05 nmol L?1 Co(II); tacc=120s), the developed procedure could be rated among the most sensitive methods employing SPEs. The Ni(II) signal was significantly lower than the Co(II) one and the separation of Ni(II) and Co(II) peaks was even better at the PbF‐SPCE than at the hanging mercury drop electrode.  相似文献   

9.
Selectivity coefficients of liquid-membrane electrodes for common inorganic anions were measured in electrodes containing tris(l,10-phenanthroline)iron(II), tris(4,7-diphenyl-1,10-phenanthroline)iron(II) or tetraheptylammonium ion in nitrobenzene, and tris(4,7-diphenyl-1,10-phenanthroline)iron(II) ion in nitrobenzene, chloroform or n-amyl alcohol as the liquid membrane. With the exception of the amyl alcohol electrode, selectivity coefficients were relatively independent of membrane composition and followed a common sequence of decreasing selectivity: PF6?> ClO4?>SCN?~I?~BF4?>NO3?>Br?>Cl?. This sequence parallels the order of increasing anion hydration energy, suggesting that aqueous phase solvation energies play a predominant role in determining electrode selectivity for these ions. Time-dependent behavior of liquid-membrane electrodes on transfer between solutions containing different ions also is described. Instantaneous e.m.f. readings were used to determine selectivity coefficients.  相似文献   

10.
The electro-insertion of ions is a well-known phenomenon, which allows the transfer of anions or cations across phase boundaries to be monitored and driven electro-chemically. Extremely hydrophilic anions, such as phosphate and arsenate, are not usually observed to undergo electro-insertion. It is shown here that at organic redox liquid|water|electrode triple interfaces these anions can be forced electro-chemically to transfer into organic media.The transfer process of phosphate anions from aqueous buffer solutions into organic microdroplets of the redox liquid N,N,N,N-tetraoctylphenylenediamine (TOPD) is pH and concentration sensitive. It is shown that phosphate is transferred in the form of PO4HK in the presence of phosphate buffer. Two distinct potential regions are identified and attributed to (i) interfacial redox processes at the liquid|liquid interface associated with deprotonation and (ii) bulk redox processes associated with anion transfer from the aqueous to the organic phase.The comparison of phosphate and arsenate electro-insertion processes suggests that arsenate is less hydrophilic and transferred into the organic phase preferentially.  相似文献   

11.
A binary ionic liquid (IL) system based on a common cation, N‐methyl‐N‐propylpyrrolidinium (C3mpyr+), and either bis(trifluoromethanesulfonyl)imide (NTf2?) or bis(fluorosulfonyl) imide (FSI?) as the anion is explored over its entire composition range. Phase behavior, determined by DSC, shows the presence of a eutectic temperature at 247 K and composition around an anion ratio of 2:1 (FSI?:NTf2?) with the phase diagram for this system proposed (under the thermal conditions used). Importantly for electrochemical devices, the single phase melting transition at the eutectic is well below ambient temperatures (247 K). To investigate the effect of such anion mixing on the lithium ion speciation, conductivity and PFG–NMR diffusion measurements were performed in both the binary IL system as well as the Li‐NTf2‐containing ternary system. The addition of the lithium salt to the mixed IL system resulted in a decrease in conductivity, as is commonly observed in the single‐component IL systems. For a fixed lithium salt composition, both conductivity and ion diffusion have linear behaviour as a function of the anion ratio, however, the rate of change of the diffusion coefficient seems greater in the presence of lithium. From the application point of view, the addition of the FSI? to the NTf2? IL results in a considerable increase in lithium ion diffusivity at room temperature and no evidence of additional complex ion behaviour.  相似文献   

12.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

13.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

14.
The ferrocene/NaY zeolite composites (Fc/NaY) are introduced on the surface of a glassy carbon electrode together with the hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6). The modified electrode thus constructed exhibits a pair of reversible redox peaks corresponding to ferrocene. Additionally the peak separation remains almost constant (58–75 mV) and the value of the ratio ipa/ipc is close to 1 for scan rates in the range from 10 to 1000 mV s?1. The effects of the scan rate, aqueous supporting electrolytes, hydrophobic ionic liquid and the contents of ferrocene encapsulated by electrochemistry are investigated. The extrazeolite electron transfer process is discussed. Furthermore, the Fc/NaY/IL‐modified electrode shows good mediation towards oxidation of ascorbic acid, dopamine, hydroquinone, and catechol.  相似文献   

15.
An ionic liquid (IL) 1‐(3‐chloro‐2‐hydroxy‐propyl)‐3‐methylimidazolium trifluoroacetate was used as the modifier for the preparation of the modified carbon paste electrode (CPE). The IL‐CPE showed excellent electrocatalytic activity towards the oxidation of guanosine‐5′‐triphosphate (5′‐GTP) in a pH 5.0 Britton‐Robinson buffer solution. Due to the presence of high conductive IL on the electrode surface, the electrooxidation of 5′‐GTP was greatly promoted with a single well‐defined irreversible oxidation peak appeared. The electrode reaction was an adsorption‐controlled process and the electrochemical parameters of 5′‐GTP on IL‐CPE were calculated with the electron transfer coefficient (α) as 0.44, the electron transfer number (n) as 1.99, the apparent heterogeneous electron transfer rate constant (ks) as 2.21 × 10?9 s?1 and the surface coverage (ΓT) as 1.53 × 10?10 mol cm?2. Under the selected conditions a linear calibration curve between the oxidation peak currents and 5′‐GTP concentration was obtained in the range from 2.0 to 1000.0 μmol L?1 with the detection limit as 0.049 μmol L?1 (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the 5‘‐GTP detection without the interferences of coexisting substances and the practical application was checked by measurements of the artificial samples.  相似文献   

16.
Voltammetry of manganese tetraphenylporphyrinato chloride in trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate solution in toluene reveals its unexpectedly low diffusion coefficient. UV‐vis spectra confirm significant Cl? exchange with large phosphate anion at the axial position of the complex. Experiments performed with a glassy carbon electrode covered by a liquid film of the same solution and immersed in an aqueous electrolyte solution show a peak potential dependence on the nature and concentration of the aqueous electrolyte anion described by a Nernst type equation. Electron transfer is followed by anion expulsion where the anion effect results from the lability of the axial coordination site of the porphyrin and from spontaneous ion exchange.  相似文献   

17.
《Analytical letters》2012,45(3):155-161
Abstract

A new method is developed for the extractive separation of mercury from associated elements. Mercury is quantitatively extracted from 0.5 M acetic acid solution by aliquat 336 S, which acts as a liquid anion exchanger. The metal ion from the organic phase is stripped with sodium hydroxide solution and determined in the aqueous phase complexometrically. The extracted species is [2(R4N+), Hg(OAc)4 ?2]. A working procedure for the selective separation of mercury from zinc, cadmium, nickel, cobalt, copper, bismuth and manganese is described.  相似文献   

18.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

19.
《Analytical letters》2012,45(5):863-877
Abstract

This paper describes a highly sensitive and selective extraction spectrophotometric method for determination of trace germanium in natural water with new a chromogenic reagent methybenzeneazosalicylfluorone abbreviated as MBASF, in which a typical room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate abbreviated as [C4mim][PF6] was used as novel medium for liquid/liquid extraction of germanium(IV). In the presence of TritonX‐100, MBASF reacted with germanium(IV) to form a red complex rapidly, the complex was then extracted into the [C4mim][PF6] phase, the absorbance of the complex in ionic liquid at 496 nm was recorded and used to determine trace germanium(IV). The apparent molar absorptivity of the complex and the detection limit for the real sample were found to be 3.12×106 L mol?1 cm?1 and 0.2 ng mL?1, respectively. The absorbance of the complex at 496 nm increases linearly with the concentration up to 4 µg of germanium (IV) in 250 mL of aqueous solution. The interference study show the determination of germanium is free from the interference of almost all positive and negative ions found in the natural water samples. The determination of germanium in natural water was carried out by the present method and electrothermal atomic absorption spectrometry (AAS). The results were satisfactorily comparable so that the applicability of the proposed method was confirmed using the real samples. Moreover, the extraction mechanism with the ionic liquid system was also investigated. We think the extraction performance of the ionic liquid system is a combination of ion‐pairing effect between imidazolium cation and basic solute in the aqueous phase with the dissolution of polar molecule in ionic liquid phase. A wise choice of the appropriate combination of anion with imidazolium cation hydrophobicity allows playing with solute selectivity.  相似文献   

20.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号